




# **Developmental Neurorehabilitation**

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/ipdr20

# Development and pilot evaluation of the Cognition domain of the Hong Kong Comprehensive Assessment Scales for Toddlers

Cynthia Leung, Tamis Pin, Andrew Siu, Alma Au, Carol To, Sing Kai Lo, Becky Chan, Kelly Lau, Theresa Ng, Cyrus Chan, Catherine Lam & Florence Lee

**To cite this article:** Cynthia Leung, Tamis Pin, Andrew Siu, Alma Au, Carol To, Sing Kai Lo, Becky Chan, Kelly Lau, Theresa Ng, Cyrus Chan, Catherine Lam & Florence Lee (2021) Development and pilot evaluation of the Cognition domain of the Hong Kong Comprehensive Assessment Scales for Toddlers, Developmental Neurorehabilitation, 24:4, 244-255, DOI: <u>10.1080/17518423.2020.1858459</u>

To link to this article: https://doi.org/10.1080/17518423.2020.1858459



Published online: 23 Dec 2020.

| C | ß |
|---|---|
|   |   |

Submit your article to this journal oxdot S

Article views: 127



View related articles 🗹

| 2 |
|---|
|   |

# Development and pilot evaluation of the Cognition domain of the Hong Kong Comprehensive Assessment Scales for Toddlers

Cynthia Leung<sup>a</sup>, Tamis Pin p<sup>a</sup>, Andrew Siu <sup>b</sup><sup>a</sup>, Alma Au<sup>a</sup>, Carol To<sup>b</sup>, Sing Kai Lo<sup>c</sup>, Becky Chan<sup>d</sup>, Kelly Lau<sup>d</sup>, Theresa Ng<sup>d</sup>, Cyrus Chan<sup>d</sup>, Catherine Lam<sup>d</sup>, and Florence Lee<sup>d</sup>

<sup>a</sup>The Hong Kong Polytechnic University; <sup>b</sup>The University of Hong Kong; <sup>c</sup>The Education University of Hong Kong; <sup>d</sup>Hong Kong SAR Government

#### ABSTRACT

**Purpose**: To describe the development of the Cognition domain of the Hong Kong Comprehensive Assessment Scales for Toddlers (HKCAS-T).

**Methods**: Participants included 345 toddlers aged 18–41 months, with 258 recruited from Maternal and Child Health Centers (MCHCs) and 87 with cognitive delay recruited from Child Assessment Centers (CACs). They were individually administered the 83-item pilot version by medical practitioners or educational psychologists between 2017 and 2019 in MCHCs and CACs in Hong Kong.

**Results**: Rasch analysis results supported the unidimensionality of the pilot version, after removing six items. Analysis of covariance results indicated that both the 83-item version and the 77-item version could differentiate between children of different age groups, and children with typical development from children with cognitive delay. Internal consistency and interrater reliability were 0.90 or above.

**Conclusions**: The Cognition domain of the HKCAS-T is a promising developmental assessment tool for the assessment of toddlers. Cognition assessment, preschool, Chinese

#### **ARTICLE HISTORY**

Received June 02, 2020 Revised October 19, 2020 Accepted November 28, 2020

**KEYWORDS** Cognition assessment; preschool; Chinese

Early identification and intervention for childhood developmental problems are crucial in the period of rapid brain growth in young children. To provide a comprehensive assessment for infants and toddlers, different professionals are often involved, with each professional performing assessment on their respective professional domains. This practice, however, is resource intensive and logistically complicated. Furthermore, with each professional performing assessment on his/her own domain, there is no comprehensive overview of the child's ability, strength, and weakness. A comprehensive assessment tool encompassing all major aspects of child development will be more efficient.

Developmental assessment of infants and toddlers mainly employs tests originally developed in English, such as Griffiths Scale of Child Development, 3<sup>rd</sup> edition (Griffiths III), Merrill-Palmer-Revised Scales of Development (M-P-R), Bayley Scales of Infant and Toddler Development, third edition (Bayley-III), and Stanford Binet Intelligence Scale - Fifth edition (SB-5).<sup>1-4</sup> Norms on these tests for the non-English-speaking population are not always available, and the cultural appropriateness of these tests for non-English-speaking children is unknown. Childhood development can be influenced by many factors such as parenting style, environmental stimulation, socioeconomic status, ethnicity, and country, and these factors need to be taken into consideration in assessing the validity of an assessment tool for a given child population.<sup>5</sup> Even if these tests were translated into another language, the cultural equivalence is still a concern. In a study on item equivalence of the English and Chinese versions of a cognitive test for Chinese and American

children, differential item functioning was found in 59% of the items. Further analyses indicated that language features such as vocabulary and cultural familiarity were possible sources of differential item functioning. Moreover, there was low agreement between the judgment of experts and the differential item functioning results on the equivalence of the translated items.<sup>6</sup> The development of a culturally appropriate assessment tool can help to address these research and service gaps.

# The Hong Kong Situation

Maternal and Child Health Centers (MCHCs) provide free universal health services for children aged 0 to 5 years who are Hong Kong residents. In Hong Kong, about 90% of all newborn children are registered with MCHCs. The health service is provided through an Integrated Child Health and Development Program which comprises three components, namely, parenting, immunization, and developmental surveillance. Through the developmental surveillance component, children suspected to have developmental delay will be referred to Child Assessment Service (CAS) for further assessment. CAS provides assessment service to young children suspected to have developmental problems so as to provide rehabilitation service to them. In CAS, children are assessed by pediatricians using the Chinese version of the Griffiths Mental Development Scales (GDS-C).<sup>5</sup> Those diagnosed as developmental delay (test scores more than two standard deviations below the mean as significant delay; test scores between one and two standard

This article has been republished with minor changes. These changes do not impact the academic content of the article. © 2020 Taylor & Francis Group, LLC

CONTACT Cynthia Leung 🛛 cynthia.leung@vu.edu.au 🗈 Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.

deviations below the mean as mild delay) will then be referred for rehabilitation services either at preschools or training centers. The decision on the mode of training and intensity of training will depend on the severity of the delay as reflected by the assessment results.

The GDS-C is the most widely used developmental assessment scale for young children in Hong Kong. It was normed based on children from urban cities in China and Hong Kong. However, GDS-C was based on the Griffiths Mental Development Scales Extended Revised (GMDS-ER), rather than the most updated Griffiths III. Furthermore, there was no information on the item equivalence or differential item functioning of the English and Chinese versions. Although the M-P-R and Bayley-III were rated as good and adequate in a number of evaluation criteria for English-speaking preschoolers,<sup>7</sup> there are no local norms for Hong Kong Chinese children. It would be ideal to have an updated and locally developed, validated, and standardized comprehensive assessment tool for accurate and reliable diagnosis of local young children so that rehabilitation service can be started early.

In 2014, The Hong Kong Comprehensive Assessment Scales for Preschool Children (HKCAS-P) was launched.<sup>8</sup> The scales target Chinese-speaking children aged 3 years 4 months to 6 years 3 months and consist of six scales, Cognition, Language, Social cognition, Visual perception, Fine motor and Gross motor scales, plus an Early Literacy and Numeracy scale for children aged 4 years and above. Age-standardized scores are available for each scale as well as the Mental Composite (Cognition, Language, Social cognition and Visual perception scales), Motor Composite (Fine motor and Gross motor scales), and Full Scale Composite. The test could be administered by pediatricians and clinical/educational psychologists who have completed accredited training by the Department of Health, Hong Kong. However, this test does not cover younger toddlers and there is currently no locally developed tool for toddlers.

To provide a comprehensive assessment tool for Chinesespeaking children aged 18 months to 41 months, the Hong Kong Comprehensive Assessment Scales for Toddlers (HKCAS-T) was being developed. The tool consisted of four domains: Cognition, Language and communication, Fine motor, and Gross motor. This paper focused on the Cognition domain.

#### The Cognition Domain

Cognition refers to the thoughts and ways of information processing.<sup>9</sup> In terms of the cognitive development of toddlers, they are moving from the sensorimotor stage to the preoperational stage.<sup>10</sup> Symbolic play emerges during this period and toddlers begin to understand symbols and language. In the development of the items of the Cognition domain, we took reference from the Cattell–Horn–Carroll theory because many assessment tools, including the Wechsler scales, are consistent with this theory.<sup>11–13</sup> According to the Cattell–Horn–Carroll theory, distinctive human abilities can be grouped into three strata levels. The first stratum includes over 70 narrow abilities such as numeracy and reading comprehension, etc. There are 10 broad abilities under the second stratum, namely, 'fluid intelligence, quantitative knowledge, crystallized intelligence, reading and writing, short-term memory, visual processing, auditory processing, long-term storage and retrieval, processing speed, decision speed and reaction time.<sup>11</sup>(p189) The third stratum comprises the g factor or general intelligence.

Using the second stratum as a reference framework, two clinical psychologists, an educational psychologist and a developmental behavioral pediatrician developed an initial pool of test items. All of them have many years of clinical experience in working with young children in child assessment service. There were 105 items tapping fluid intelligence (e.g., sequential reasoning), quantitative knowledge, crystallized intelligence (e.g., general information), visual processing (e.g., visual perceptual integration) and visual memory. The visual stimuli of the items were designed by an artist taking reference to the local context. The initial pool of items was administered to 28 toddlers aged 16 months to 43 months by the two clinical psychologists involved in the development of test items. Based on the results from these children, items that could not distinguish between age groups were eliminated, resulting in a final pool of 83 items.

#### **The Present Study**

This study aimed to examine the psychometric properties of the pilot version of the Cognition domain of the HKCAS-T. Rasch analysis was used to examine the difficulty level of the items and its measurement properties. In terms of measurement properties, the concept of undimensionality is important. If we are to sum up the item scores to form a total score, it is important that all items are measuring a single construct. The infit and outfit statistics in Rasch analysis, as well as the principal component analysis (PCA) of the residuals, were used to examine unidimensionality.<sup>14</sup> The Wright map was used to find out whether the items could target the ability levels of the children.<sup>14</sup> In terms of construct validity, the items' ability to differentiate between children with or without cognitive delay and children of different age groups were examined.<sup>9</sup> Based on the Rasch analysis results and the items' ability to differentiate between children with or without cognitive delay and children of different age groups, the scale could be refined and modified. In terms of reliability, internal consistency and interrater reliability were examined.

It was hypothesized that:

- The Cognition domain of the HKCAS-T would be able to differentiate children from different age groups, in the sense that older children would attain higher scores than younger children.
- (2) The Cognition domain of the HKCAS-T would be able to differentiate children with typical development from those with cognitive delay, in the sense that the former group would attain higher scores than the latter group.

# Methods

#### Participants

The study population was children aged 18 months to 41 months registered at MCHCs. Out of the 31 MCHCs in the territory, five

MCHCs were selected in four districts (out of 18 districts throughout Hong Kong) with different socioeconomic status as measured by median monthly household income (the highest, the lowest, the 6th and the 12th) based on the most recent household statistics.<sup>15</sup> Children suspected of developmental problems based on MCHC records (e.g., referral by MCHC nurses to MCHC doctors for further assessment, referral to CAS for assessment, or confirmed diagnosis from CAS) were excluded. Sex, age groups, and geographical areas were used for stratification in sampling. Simple random sampling was applied for selection in each 3-month stratum. A total of 2,632 children aged 18 months to 41 months were invited for participation between August 2017 and October 2018, and 258 children completed the assessment. The response rate was 9.8%. There were 16 boys and 16 girls in each 3-month age group, except for the 39-41 month group which consisted of 16 boys and 18 girls (MCHC sample).

In addition, participants were recruited from children who attended CAS for assessment during the research period. Children aged 18 months to 41 months who were diagnosed as having a delay in one or more areas of development (at least one to two standard deviations below the mean on standardized tests such as GDS-C) by individual Child Assessment Center (CAC) pediatricians were invited to participate. Out of 1,218 invitation letters sent, parents of 114 children consented to participate. The response rate was 9.4%. Among them, there were 87 children (8–15 children from each 3-month group) diagnosed with cognitive delay (at least one to two standard deviations below the mean on standardized tests such as GDS-C) by CAC pediatricians (CAS sample).

The sample size calculation was based on the sample size required for Rasch analysis, and the sample size required to compare the scores of children with typical development versus children with cognitive delay, and comparison across age groups. In Rasch analysis, a sample size of 250 is adequate for assessing item characteristics.<sup>16</sup> For comparison between two groups, assuming that children with cognitive delay will be at least one to two standard deviations below the mean in developmental assessment (assuming the mean of children with cognitive delay to be ≤80 on standardized assessment where mean = 100 and sd = 15), a sample size of 10 per age group is adequate for comparison between children with typical development versus children with cognitive delay (power = 0.80,  $\alpha$  = 0.05) for each 3-month age group. For comparison between eight age groups, the sample size for comparison between eight groups is 240 (power = 0.80,  $\alpha$  = 0.05) assuming a medium effect size.

#### Measures

The HKCAS-T was administered individually to the participating children. For the Cognition domain, it consists of 83 items. The sequential reasoning items require children to point to the correct answer among three or four pictures. The quantitative knowledge items require children to do some simple counting with objects. The general information items include basic color and shape concepts, and pointing to named familiar pictures and common symbols. The visual perceptual integration items include tasks such as putting blocks together according to a stimulus design, and assembling jigsaw puzzles. The visual memory items include finding a hidden object hidden by the field tester before the child and tapping objects after a particular pattern demonstrated by the field tester. As most items are straightforward in terms of attainment or nonattainment (e.g., pointing to the named picture stimulus or objects correctly), all items are scored as 1 (attained) or 0 (not attained) to achieve a uniform rating scale. The assessment is conducted in Cantonese which is the major language used by the Hong Kong population, spoken by 88.9% of the population at home.<sup>17</sup>

# Procedures

Toddlers in the specified age groups were identified from the MCHC register. A research officer randomly selected the children using random numbers generated by the SPSS complex samples function. Invitation letters and consent forms with reply paid envelopes were then sent to the parents of the selected children. Upon receiving the signed consent forms, a research assistant contacted the parents by phone to work out the dates, times, and venues of assessment. This process continued until the target of 64 children per geographical district (4 boys and 4 girls in each age group) was reached.

For the children recruited through CAS, invitation letters and consent forms with reply paid envelopes were sent to the parents of eligible children (at least one to two standard deviations below the mean on standardized assessment such as GDS-C) to invite them to participate. Upon securing parent consent, a research assistant contacted the parents to arrange dates, times, and venues of assessment.

The children were assessed on the pilot HKCAS-T by two medical practitioners and four educational psychologists in MCHCs or CACs. These field testers were trained by the professionals who developed the test items to ensure that the field testers could administer and score the test according to protocol. This study was approved by the Ethics Committee of the Department of Health, Hong Kong SAR Government.

#### **Data Analysis**

Rasch analysis was used to examine the unidimensionality and difficulty level of the items, as well as the targeting of items. Reliability (internal consistency) was assessed using KR-20. Inter-rater reliability was assessed using Kappa. Analysis of covariance (ANCOVA) was used to investigate whether the items could differentiate children from different age groups, controlling for covariates. Independent *t*-test/ANCOVA was used to examine whether the items could differentiate children with a cognitive delay from children with typical development, controlling for covariates where appropriate.

# Results

#### **Rasch Analysis**

Infit and outfit mean square statistics were used to examine the unidimensionality of the Cognition domain items. Using the cutoff of 0.60 and 1.40, there were four items (items 1, 21, 65, and 66) with infit/outfit statistics outside the recommended

range.<sup>14</sup> When these items were removed, it was found that the infit/outfit statistics of item 23 was outside the recommended range. After removing item 23, the infit/outfit statistics of item 22 was outside the recommended range and this item was also removed. The infit statistics of the 77 remaining items were within the recommended range (Table 1). More attention should be paid to infit values<sup>14</sup> The person reliability of the 83-item version was 0.97 and the person separation was 5.90. The item reliability of the 83-item version was 0.99 and the item separation was 0.97 and the person reliability of the 77-item version was 0.97 and the person separation was 5.67. The item reliability of the 77-item version was 0.99 and the item separation was 11.22.

Another way to examine unidimensionality is to inspect the PCA of the residuals. The criteria for unidimensionality are (i) the variance explained by measures should be at least 40%; (ii) the variance explained by the first principal component of the residuals should be less than 15%; and (iii) the ratio of variance in measures to variance in the first principal component of the residuals should be at least 3:1.<sup>18</sup> With the original version with 83 items, PCA of the residuals indicated that the variance explained by measures was 58.2%. The variance explained by the first principal component of the residuals was 3.9%. The ratio of variance in measures to variance in the first principal component of the residuals was 14.92:1. For the 77-item version, PCA of the residuals indicated that the variance explained by measures was 58.7%. The variance explained by the first principal component of the residuals was 4.3%. The ratio of variance in measures to variance in the first principal component of the residuals was 13.65:1. For both versions, all three criteria were fulfilled, supporting the unidimensionality of the scale.

Item difficulty and targeting were examined using the Wright map. The Wright map distribution of both the 83item version (Figure 1) and 77-item version (Figure 2) suggested that the Cognition domain items could target the ability range of the children, though there were fewer items at the high and the low end.

# Analysis by Age Groups

There were no significant differences in demographic characteristics among the age groups except language used by the children at home,  $\chi^2(14) = 23.92$ , p = .047. Apart from the oldest and youngest age groups, and the 24–26 months group, all children used Cantonese at home. In the oldest age group, two children used Mandarin at home. Two children in the 18–20 months group, and one child in the 24–26 months group used English at home. The demographic characteristics of the children are shown in Table 2.

ANCOVA was used to analyze the age group difference in HKCAS-T Cognition domain scores. As there was a difference in the language spoken at home by age groups, two dummy variables were created (English versus others, Cantonese versus others) and they were used as covariates in the analysis on age group differences. The independent variable was age groups and the dependent variable was HKCAS-T Cognition domain scores. As two comparisons were made, the Bonferroni adjusted alpha level was 0.025. The results were significant

| Table 1. Infit and outfit statist | ics of the cognition domain items. |
|-----------------------------------|------------------------------------|
|-----------------------------------|------------------------------------|

| Item         Measure         Infit         Outfit         Measure         Infit         Outfit           1         -4.52         1.55         9.90         Deleted           2         -6.09         0.74         3.08         -6.85         0.76         6.051           3         -6.48         1.00         1.93         -7.31         1.13         3.11           4         -6.28         1.30         4.93         -7.07         1.39         9.38           5         -2.24         0.74         0.57         -2.55         0.61         0.39           6         -2.26         0.74         0.57         -2.55         0.61         0.39           9         0.37         1.07         0.97         0.24         1.11         1.04           10         0.40         0.80         0.66         0.27         0.90         0.68           11         0.40         0.80         0.66         0.27         0.90         0.68           12         0.65         0.93         0.79         0.29         0.94         0.78           13         0.32         0.93         0.80         0.88         0.66         0.38         1.98                                                                               | adie I. | Infit and outfit |      |      |         |         |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------|------|------|---------|---------|--------|
| $  \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4       |                  |      |      |         |         | 0      |
| 2         -6.09         0.74         3.08         -6.85         0.76         6.05           3         -6.48         1.00         1.93         -7.31         1.13         3.11           4         -6.28         1.30         4.93         -7.07         1.39         9.38           5         -2.26         0.74         0.57         -2.55         0.81         0.39           6         -2.26         0.74         0.57         -2.56         0.61         0.39           8         -2.09         0.68         0.39         -2.34         0.71         0.39           9         0.37         107         0.97         0.24         1.11         1.04           10         0.40         0.88         0.66         0.27         0.90         0.68           12         0.65         0.92         0.87         0.52         0.94         0.92           14         0.48         0.95         0.87         0.32         0.93         0.92           15         0.37         0.95         0.87         0.28         0.64         0.29           15         0.37         0.95         0.87         0.28         0.64         0.29 <td></td> <td></td> <td></td> <td></td> <td>Measure</td> <td></td> <td>Outfit</td> |         |                  |      |      | Measure |         | Outfit |
| 3         -6.48         1.00         1.93         -7.31         1.13         3.11           5         -2.47         0.77         0.51         -2.75         0.81         0.54           6         -2.26         0.74         0.57         -2.52         0.78         1.44           7         -2.30         0.59         0.30         -2.56         0.61         0.30           8         -2.09         0.68         0.39         -2.34         0.71         0.39           9         0.37         1.07         0.97         0.24         1.11         1.04           10         0.40         0.80         0.61         0.27         0.83         0.62           11         0.40         0.80         0.661         0.27         0.90         0.68           12         0.65         0.92         0.87         0.22         0.94         0.78           13         0.32         0.93         0.80         0.38         0.68         0.48           14         0.48         0.92         0.79         0.29         0.94         0.78           17         0.51         0.66         0.38         1.98         0.66         0.37 <td></td> <td></td> <td></td> <td></td> <td>6 95</td> <td></td> <td>6.05</td>     |         |                  |      |      | 6 95    |         | 6.05   |
| 4         -6.28         1.30         4.93         -7.07         1.39         9.38           6         -2.26         0.74         0.57         -2.52         0.78         1.44           7         -2.30         0.59         0.30         -2.56         0.61         0.33           9         0.37         1.07         0.97         0.24         1.11         1.04           0.40         0.80         0.61         0.27         0.90         0.68           11         0.40         0.88         0.66         0.27         0.90         0.68           12         0.65         0.92         0.87         0.52         0.94         0.94           13         0.32         0.93         0.80         0.18         0.97         0.29         0.94         0.78           14         0.48         0.95         0.87         0.24         0.98         0.32           15         0.37         0.95         0.87         0.24         0.98         0.92           15         0.43         0.92         0.79         0.39         0.92         0.94         0.78           16         0.43         0.92         0.73         0.83 <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>             | 2       |                  |      |      |         |         |        |
| 6         -2.26         0.74         0.57         -2.52         0.78         1.44           7         -2.30         0.59         0.30         -2.24         0.71         0.39           9         0.37         1.07         0.97         0.24         1.11         1.04           10         0.40         0.88         0.66         0.27         0.90         0.88           11         0.40         0.88         0.66         0.27         0.90         0.82           12         0.65         0.92         0.87         0.52         0.94         0.94           13         0.32         0.93         0.80         0.18         0.97         0.82           15         0.37         0.95         0.87         0.24         0.98         0.92           16         0.43         0.92         0.79         0.39         0.92         0.94         0.78           17         0.51         0.64         0.38         1.98         0.66         0.38         1.98         0.66           20         3.05         0.65         0.31         2.98         0.64         0.29           21         -3.51         1.49         3.43                                                                                      | 4       |                  |      |      |         |         |        |
| 7         -2.30         0.59         0.30         -2.56         0.61         0.33           8         -2.09         0.68         0.39         -2.34         0.71         0.39           9         0.37         1.07         0.97         0.24         1.11         1.04           10         0.40         0.80         0.66         0.27         0.83         0.62           12         0.65         0.92         0.87         0.52         0.94         0.94           13         0.32         0.93         0.80         0.18         0.97         0.82           14         0.48         0.95         0.96         0.35         0.98         0.92           16         0.43         0.92         0.79         0.29         0.94         0.78           17         0.51         0.66         0.44         0.38         0.66         0.37           19         3.14         0.78         0.40         3.07         0.79         0.39           20         3.05         0.65         0.31         2.98         0.64         0.29           21         -3.27         1.28         2.44         Deleted         2         0.30                                                                                      | 5       |                  | 0.77 | 0.51 |         |         | 0.54   |
| 8         -2.09         0.68         0.39         -2.34         0.71         0.39           9         0.37         1.07         0.97         0.24         1.11         1.04           10         0.40         0.80         0.61         0.27         0.90         0.88           11         0.40         0.88         0.66         0.27         0.90         0.83           13         0.32         0.93         0.80         0.18         0.97         0.82           14         0.48         0.95         0.87         0.24         0.98         0.92           15         0.37         0.95         0.87         0.24         0.98         0.92           16         0.43         0.92         0.79         0.39         0.92         0.79         0.39           20         3.05         0.65         0.31         2.98         0.64         0.29           21         -3.51         1.49         3.43         Deleted         22         -3.22         1.28         2.44         D.92         0.70           22         -3.3         0.76         0.51         0.81         0.78         0.72           23         -3.49 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>              |         |                  |      |      |         |         |        |
| 9         0.37         1.07         0.97         0.24         1.11         1.04           10         0.40         0.88         0.66         0.27         0.90         0.68           12         0.65         0.92         0.87         0.52         0.94         0.94           13         0.32         0.93         0.80         0.18         0.97         0.29         0.94         0.92           14         0.48         0.95         0.96         0.35         0.98         1.03           15         0.37         0.95         0.87         0.24         0.98         0.92           16         0.43         0.92         0.79         0.29         0.94         0.78           17         0.51         0.66         0.38         1.98         0.66         0.37           19         3.14         0.78         0.40         3.07         0.79         0.39           20         3.05         0.65         0.31         2.98         0.64         0.29           21         -3.31         1.49         3.43         Deleted         22         -3.22         1.20         7.8         0.51         0.71           22                                                                                       |         |                  |      |      |         |         |        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                  |      |      |         |         |        |
| 11       0.40       0.88       0.66       0.27       0.90       0.68         12       0.65       0.92       0.87       0.52       0.94       0.94         13       0.32       0.93       0.80       0.18       0.97       0.82         14       0.43       0.95       0.87       0.24       0.98       0.92         16       0.43       0.92       0.79       0.29       0.94       0.78         17       0.51       0.66       0.44       0.38       0.65       0.37         18       2.08       0.66       0.31       2.98       0.64       0.29         21 $-3.51$ 1.49       3.43       Deleted       0.29       0.70         23       -4.44       1.35       2.77       Deleted       0.52       0.93       0.91       0.70       0.81       0.78       0.52         24       0.93       0.76       0.51       0.81       0.72       0.70       26       2.21       0.77       0.52       2.12       0.78       0.51         25       0.93       0.91       0.70       0.81       0.72       0.67       0.72       0.57       -3.66       <                                                                                                                                                                 |         |                  |      |      |         |         |        |
| 13 $0.32$ $0.93$ $0.80$ $0.18$ $0.97$ $0.82$ 14 $0.48$ $0.95$ $0.87$ $0.24$ $0.98$ $0.92$ 15 $0.37$ $0.95$ $0.87$ $0.24$ $0.98$ $0.92$ 16 $0.43$ $0.92$ $0.79$ $0.29$ $0.94$ $0.78$ 17 $0.51$ $0.66$ $0.38$ $1.98$ $0.65$ $0.37$ 18 $2.08$ $0.66$ $0.38$ $1.98$ $0.65$ $0.37$ 20 $3.05$ $0.65$ $0.31$ $2.98$ $0.64$ $0.29$ 21 $-3.51$ $1.49$ $3.43$ Deleted         22 $-3.22$ $1.28$ $2.44$ Deleted         23 $-4.44$ $1.52$ $2.12$ $0.78$ $0.51$ 24 $0.93$ $0.76$ $0.51$ $0.81$ $0.78$ $0.52$ 25 $0.93$ $0.77$ $0.54$ $-3.76$ $0.70$ $0.72$ 27 $3.70$ $0.89$ $0.55$ $-3.76$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 0.40             |      | 0.66 |         |         |        |
| 14       0.48       0.95       0.96       0.35       0.98       1.03         15       0.37       0.95       0.87       0.24       0.98       0.92         16       0.43       0.92       0.79       0.29       0.94       0.78         17       0.51       0.66       0.44       0.38       0.68       0.45         18       2.08       0.66       0.31       1.98       0.65       0.37         19       3.14       0.78       0.40       3.07       0.79       0.39         20       3.05       0.65       0.31       2.98       0.64       0.29         21       -3.51       1.49       3.43       Deleted       1.02       0.32         22       -3.22       1.28       2.44       Deleted       1.03       0.51       0.81       0.92       0.70         24       0.93       0.76       0.51       0.81       0.92       0.70       0.81       0.92       0.70         26       2.21       0.77       0.52       2.12       0.78       0.55       3.64       0.90       0.55         28       4.90       1.00       0.74       4.86       1                                                                                                                                                                 |         |                  |      |      |         |         |        |
| 15 $0.37$ $0.95$ $0.87$ $0.24$ $0.98$ $0.92$ 16 $0.43$ $0.92$ $0.79$ $0.29$ $0.94$ $0.78$ 17 $0.51$ $0.66$ $0.38$ $0.88$ $0.65$ $0.37$ 19 $3.14$ $0.78$ $0.40$ $3.07$ $0.79$ $0.39$ 20 $3.05$ $0.65$ $0.31$ $2.98$ $0.64$ $0.29$ 21 $-3.51$ $1.49$ $3.43$ Deleted $22$ $-3.22$ $1.28$ $2.44$ Deleted         22 $-3.22$ $1.28$ $2.44$ Deleted $0.51$ $0.81$ $0.72$ $0.52$ 25 $0.93$ $0.91$ $0.70$ $0.81$ $0.92$ $0.72$ $0.52$ $2.12$ $0.78$ $0.51$ 26 $2.21$ $0.77$ $0.52$ $2.12$ $0.78$ $0.51$ 27 $3.70$ $0.89$ $0.55$ $3.64$ $0.30$ $0.31$ $3.30$ $0.51$ 28 $4.90$ $1.00$ $7.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                  |      |      |         |         |        |
| 16 $0.43$ $0.92$ $0.79$ $0.29$ $0.94$ $0.78$ 17 $0.51$ $0.66$ $0.38$ $1.98$ $0.65$ $0.37$ 19 $3.14$ $0.78$ $0.40$ $3.07$ $0.79$ $0.39$ 20 $3.05$ $0.65$ $0.31$ $2.98$ $0.64$ $0.29$ 21 $-3.51$ $1.49$ $3.43$ Deleted         22 $-3.22$ $1.28$ $2.44$ Deleted         24 $0.93$ $0.76$ $0.81$ $0.78$ $0.52$ 25 $0.93$ $0.91$ $0.70$ $0.81$ $0.92$ $0.70$ 26 $2.21$ $0.77$ $0.52$ $2.12$ $0.78$ $0.51$ 27 $3.70$ $0.89$ $0.55$ $3.64$ $0.90$ $0.57$ 28 $4.90$ $1.00$ $0.74$ $4.86$ $0.97$ $0.72$ 28 $-3.39$ $0.87$ $0.55$ $-3.76$ $0.76$ $0.61$ 31 $-3.39$ $0.76$ $0.57$ $-4.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                  |      |      |         |         |        |
| 17         0.51         0.66         0.44         0.38         0.68         0.45           18         2.08         0.66         0.38         1.98         0.65         0.37           19         3.14         0.78         0.40         3.07         0.79         0.39           20         3.05         0.65         0.31         2.98         0.64         0.29           21         -3.51         1.49         3.43         Deleted         2           22         -3.22         1.28         2.44         Deleted         2           24         0.93         0.76         0.81         0.78         0.52           25         0.93         0.91         0.70         0.81         0.92         0.72           26         2.21         0.77         0.52         2.12         0.78         0.51           27         3.70         0.89         0.55         3.64         0.90         0.55           28         4.90         1.00         0.74         4.86         1.01         0.78           30         0.70         0.67         -4.58         0.82         0.76           31         -3.39         0.80                                                                                                 |         |                  |      |      |         |         |        |
| 19         3.14         0.78         0.40         3.07         0.79         0.39           20         3.05         0.65         0.31         2.98         0.64         0.29           21         -3.51         1.49         3.43         Deleted           22         -3.22         1.28         2.44         Deleted           23         -4.44         1.35         2.77         Deleted           24         0.93         0.76         0.51         0.81         0.78         0.52           25         0.93         0.91         0.70         0.81         0.92         0.70           26         2.21         0.77         0.52         2.12         0.78         0.51           27         3.70         0.67         0.49         -4.11         0.78         0.72           20         -3.70         0.67         0.57         -4.58         0.82         0.76           31         -3.28         0.71         0.54         -3.63         0.73         0.61           34         -4.12         0.76         0.57         -4.58         0.82         0.76           35         -3.71         0.51         0.54         <                                                                                    |         |                  |      |      |         |         |        |
| 20         3.05         0.65         0.31         2.98         0.64         0.29           21         -3.51         1.49         3.43         Deleted           22         -3.22         1.28         2.44         Deleted           23         -4.44         1.35         2.77         Deleted           24         0.93         0.76         0.51         0.81         0.78         0.52           25         0.93         0.91         0.70         0.81         0.92         0.70           26         2.21         0.77         0.52         2.12         0.78         0.51           28         4.90         1.00         0.74         4.86         1.01         0.78           29         -3.39         0.82         0.65         -3.76         0.87         0.72           30         -3.79         0.67         0.49         -4.11         0.73         0.61           34         -4.12         0.76         0.57         -3.63         0.73         0.61           34         -4.12         0.76         0.57         -4.58         0.82         0.76           35         -3.11         0.73         0.53                                                                                             |         |                  |      |      |         |         |        |
| 21         -3.51         1.49         3.43         Deleted           22         -3.22         1.28         2.44         Deleted           23         -4.44         1.35         2.77         Deleted           24         0.93         0.76         0.51         0.81         0.78         0.52           25         0.93         0.91         0.70         0.81         0.92         0.70           26         2.21         0.77         0.52         3.64         0.90         0.55           28         4.90         1.00         0.74         4.86         1.01         0.78           29         -3.39         0.82         0.65         -3.76         0.97         0.72           31         -3.39         0.76         0.55         -3.76         0.97         0.72           32         -3.39         0.76         0.57         -4.58         0.82         0.76           34         -4.12         0.76         0.57         -4.58         0.82         0.76           35         -3.11         0.73         0.53         -3.45         0.74         0.59           36         -3.57         0.75         0.53                                                                                           |         |                  |      |      |         |         |        |
| 22         -3.22         1.28         2.44         Deleted           23         -4.44         1.35         2.77         Deleted           24         0.93         0.76         0.51         0.81         0.78         0.52           25         0.93         0.91         0.70         0.81         0.92         0.70           26         2.21         0.77         0.52         2.12         0.78         0.51           27         3.70         0.89         0.55         3.64         0.90         0.55           28         4.90         1.00         0.74         4.86         1.01         0.78           29         -3.39         0.82         0.65         -3.76         0.87         0.72           30         -3.70         0.67         0.49         -4.11         0.73         0.61           31         -3.39         0.76         0.55         -3.76         0.76         0.61           33         -3.28         0.71         0.54         -3.63         0.73         0.61           35         -3.11         0.75         0.53         -3.96         0.80         0.63           36         -3.57 <t< td=""><td></td><td></td><td></td><td></td><td>2.98</td><td></td><td>0.29</td></t<>        |         |                  |      |      | 2.98    |         | 0.29   |
| 23         -4.44         1.35         2.77         Deleted           24         0.93         0.76         0.51         0.81         0.78         0.52           25         0.93         0.91         0.70         0.81         0.92         0.70           26         2.21         0.77         0.52         2.12         0.78         0.51           27         3.70         0.89         0.55         3.64         0.90         0.55           28         4.90         1.00         0.74         4.86         1.01         0.78           29         -3.39         0.89         0.62         -3.76         0.97         0.72           31         -3.39         0.76         0.55         -3.76         0.77         0.61           33         -3.28         0.71         0.54         -3.63         0.73         0.61           34         -4.12         0.76         0.57         -4.58         0.82         0.76           35         -3.11         0.73         0.53         -3.45         0.74         0.59           36         -3.57         0.75         0.53         -3.66         0.80         0.63 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                 |         |                  |      |      |         |         |        |
| 24         0.93         0.76         0.51         0.81         0.78         0.52           25         0.93         0.91         0.70         0.81         0.92         0.70           26         2.21         0.77         0.52         2.12         0.78         0.51           27         3.70         0.89         0.55         3.64         0.90         0.55           28         4.90         1.00         0.74         4.86         1.01         0.72           30         -3.70         0.67         0.49         -4.11         0.73         0.61           31         -3.29         0.76         0.55         -3.76         0.76         0.61           33         -3.28         0.71         0.54         -3.63         0.73         0.61           34         -4.12         0.76         0.57         -4.58         0.82         0.76           36         -3.57         0.75         0.53         -3.45         0.74         0.59           36         -1.12         1.16         -1.31         1.18         1.28           39         0.76         1.06         1.56         0.64         1.18         1.22                                                                                         |         |                  |      |      |         |         |        |
| 26       2.21       0.77       0.52       2.12       0.78       0.51         27       3.70       0.89       0.55       3.64       0.90       0.55         28       4.90       1.00       0.74       4.86       1.01       0.78         29       -3.39       0.82       0.65       -3.76       0.97       0.72         31       -3.39       0.76       0.55       -3.76       0.97       0.72         32       -3.39       0.76       0.57       -4.58       0.82       0.76         34       -4.12       0.76       0.57       -4.58       0.82       0.76         35       -3.11       0.73       0.53       -3.45       0.74       0.59         36       -3.57       0.75       0.53       -3.96       0.80       0.63         37       -0.66       1.05       0.96       -0.83       1.10       1.02         38       -1.12       1.12       1.16       -1.13       1.18       1.28         39       0.76       1.06       1.56       0.64       1.10       1.78         40       1.88       0.84       0.59       1.78       0.86       <                                                                                                                                                                    |         |                  |      |      |         |         |        |
| 27       3.70       0.89       0.55       3.64       0.90       0.55         28       4.90       1.00       0.74       4.86       1.01       0.78         29       -3.39       0.82       0.65       -3.76       0.85       0.72         30       -3.70       0.67       0.49       -4.11       0.73       0.61         31       -3.39       0.89       0.62       -3.76       0.97       0.72         32       -3.39       0.76       0.55       -3.76       0.76       0.61         34       -4.12       0.76       0.57       -4.58       0.82       0.76         35       -3.11       0.73       0.53       -3.45       0.74       0.59         36       -3.57       0.75       0.53       -3.96       0.80       0.63         37       -0.66       1.05       0.96       -0.83       1.10       1.02         38       -1.12       1.12       1.16       -1.31       1.18       1.28         40       1.88       0.84       0.59       1.78       0.86       0.60         41       -0.42       1.18       2.00       -0.58       1.22                                                                                                                                                                        |         |                  |      |      |         |         |        |
| 28         4.90         1.00         0.74         4.86         1.01         0.78           29         -3.39         0.82         0.65         -3.76         0.85         0.72           30         -3.70         0.67         0.49         -4.11         0.73         0.61           31         -3.39         0.76         0.55         -3.76         0.76         0.61           33         -3.28         0.71         0.54         -3.63         0.73         0.61           34         -4.12         0.76         0.57         -4.58         0.82         0.76           35         -3.11         0.73         0.53         -3.96         0.80         0.63           37         -0.66         1.05         0.96         -0.83         1.10         1.02           38         -1.12         1.12         1.72         1.81         1.82         0.64         1.10         1.78           40         1.88         0.84         0.59         1.78         0.86         0.60           41         -0.42         1.18         2.00         -0.58         1.22         2.60           42         1.04         0.86         0.91                                                                                    |         |                  |      |      |         |         |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                  |      |      |         |         |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                  |      |      |         |         |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30      | -3.70            | 0.67 | 0.49 | -4.11   | 0.73    | 0.61   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                  |      |      |         |         |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                  |      |      |         |         |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                  |      |      |         |         |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                  |      |      |         |         |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                  |      |      |         |         |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                  |      |      |         |         |        |
| 401.880.840.591.780.860.6041 $-0.42$ 1.182.00 $-0.58$ 1.222.60421.040.860.910.930.880.97431.810.981.121.721.011.15441.661.201.311.561.241.52453.241.231.203.181.261.2446 $-0.02$ 1.101.37 $17$ 1.141.88471.271.301.691.161.341.8448 $-1.32$ 1.151.00 $-1.52$ 1.231.16492.211.010.742.121.030.76501.631.191.011.531.211.0551 $-0.66$ 0.800.65 $-0.83$ 0.840.6752 $-2.80$ 1.215.08 $-3.11$ 1.397.0653 $-1.71$ 1.061.17 $-1.93$ 1.131.3254 $-1.42$ 0.770.74 $-1.63$ 0.810.77550.231.221.970.091.262.5856 $-2.26$ 0.990.77 $-2.52$ 1.050.89571.131.071.181.011.081.14580.961.010.850.841.020.84590.480.950.900.350.980.97602.66 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                  |      |      |         |         |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                  |      |      |         |         |        |
| 431.810.981.121.721.011.15441.661.201.311.561.241.52453.241.231.203.181.261.2446 $-0.02$ 1.101.37 $17$ 1.141.88471.271.301.691.161.341.8448 $-1.32$ 1.151.00 $-1.52$ 1.231.16492.211.010.742.121.030.76501.631.191.011.531.211.0551 $-0.66$ 0.800.65 $-0.83$ 0.840.6752 $-2.80$ 1.215.08 $-3.11$ 1.397.0653 $-1.71$ 1.061.17 $-1.93$ 1.131.3254 $-1.42$ 0.770.74 $-1.63$ 0.810.77550.231.221.970.091.262.5856 $-2.26$ 0.990.77 $-2.52$ 1.050.89571.131.071.181.011.081.14580.961.010.850.841.020.84590.480.950.900.350.980.97602.661.050.692.581.070.71612.390.820.552.300.820.57621.630.870.601.530.890.61631.190.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                  |      |      |         |         |        |
| 441.661.201.311.561.241.52 $45$ $3.24$ $1.23$ $1.20$ $3.18$ $1.26$ $1.24$ $46$ $-0.02$ $1.10$ $1.37$ $17$ $1.14$ $1.88$ $47$ $1.27$ $1.30$ $1.69$ $1.16$ $1.34$ $1.84$ $48$ $-1.32$ $1.15$ $1.00$ $-1.52$ $1.23$ $1.16$ $49$ $2.21$ $1.01$ $0.74$ $2.12$ $1.03$ $0.76$ $50$ $1.63$ $1.19$ $1.01$ $1.53$ $1.21$ $1.05$ $51$ $-0.66$ $0.80$ $0.65$ $-0.83$ $0.84$ $0.67$ $52$ $-2.80$ $1.21$ $5.08$ $-3.11$ $1.39$ $7.06$ $53$ $-1.71$ $1.06$ $1.17$ $-1.93$ $1.13$ $1.32$ $54$ $-1.42$ $0.77$ $0.74$ $-1.63$ $0.81$ $0.77$ $55$ $0.23$ $1.22$ $1.97$ $0.09$ $1.26$ $2.58$ $56$ $-2.26$ $0.99$ $0.77$ $-2.52$ $1.05$ $0.89$ $57$ $1.13$ $1.07$ $1.18$ $1.01$ $1.08$ $1.14$ $58$ $0.96$ $1.01$ $0.85$ $0.84$ $1.02$ $0.84$ $59$ $0.48$ $0.95$ $0.90$ $0.35$ $0.98$ $0.97$ $61$ $2.39$ $0.82$ $0.55$ $2.30$ $0.82$ $0.57$ $62$ $1.63$ $0.87$ $0.60$ $1.53$ $0.89$ $0.61$ $63$ <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                       |         |                  |      |      |         |         |        |
| 45 $3.24$ $1.23$ $1.20$ $3.18$ $1.26$ $1.24$ $46$ $-0.02$ $1.10$ $1.37$ $17$ $1.14$ $1.88$ $47$ $1.27$ $1.30$ $1.69$ $1.16$ $1.34$ $1.84$ $48$ $-1.32$ $1.15$ $1.00$ $-1.52$ $1.23$ $1.16$ $49$ $2.21$ $1.01$ $0.74$ $2.12$ $1.03$ $0.76$ $50$ $1.63$ $1.19$ $1.01$ $1.53$ $1.21$ $1.05$ $51$ $-0.66$ $0.80$ $0.65$ $-0.83$ $0.84$ $0.67$ $52$ $-2.80$ $1.21$ $5.08$ $-3.11$ $1.39$ $7.06$ $53$ $-1.71$ $1.06$ $1.17$ $-1.93$ $1.13$ $1.32$ $54$ $-1.42$ $0.77$ $0.74$ $-1.63$ $0.81$ $0.77$ $55$ $0.23$ $1.22$ $1.97$ $0.09$ $1.26$ $2.58$ $56$ $-2.26$ $0.99$ $0.77$ $-2.52$ $1.05$ $0.89$ $57$ $1.13$ $1.07$ $1.18$ $1.01$ $1.08$ $1.14$ $58$ $0.96$ $1.01$ $0.85$ $0.84$ $1.02$ $0.84$ $59$ $0.48$ $0.95$ $0.90$ $0.35$ $0.98$ $0.97$ $60$ $2.66$ $1.05$ $0.69$ $2.58$ $1.07$ $0.71$ $61$ $2.39$ $0.82$ $0.55$ $2.30$ $0.82$ $0.57$ $62$ $1.63$ $0.87$ $0.60$ $1.53$ $0.89$ $0.61$                                                                                                                                                                                                                                                                                                                           |         |                  |      |      |         |         |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                  |      |      |         |         |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                  |      |      |         |         |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                  |      |      |         |         |        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                  |      |      |         |         |        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                  |      |      |         |         |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                  |      |      |         |         |        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                  |      |      |         |         |        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                  | 1.06 |      |         | 1.13    |        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                  |      |      |         |         |        |
| 57       1.13       1.07       1.18       1.01       1.08       1.14         58       0.96       1.01       0.85       0.84       1.02       0.84         59       0.48       0.95       0.90       0.35       0.98       0.97         60       2.66       1.05       0.69       2.58       1.07       0.71         61       2.39       0.82       0.55       2.30       0.82       0.57         62       1.63       0.87       0.60       1.53       0.89       0.61         63       1.19       0.96       0.79       1.07       0.98       0.82         64       3.40       1.01       0.72       3.34       1.03       0.71         65       0.54       1.42       1.65       Deleted       66         66       1.13       1.46       1.63       Deleted       66         67       1.42       0.86       0.68       1.31       0.90       0.70         68       0.59       1.09       0.94       0.47       1.14       1.05         69       -0.13       1.12       1.23       -0.28       1.16       1.41         70                                                                                                                                                                                        |         |                  |      |      |         |         |        |
| 58         0.96         1.01         0.85         0.84         1.02         0.84           59         0.48         0.95         0.90         0.35         0.98         0.97           60         2.66         1.05         0.69         2.58         1.07         0.71           61         2.39         0.82         0.55         2.30         0.82         0.57           62         1.63         0.87         0.60         1.53         0.89         0.61           63         1.19         0.96         0.79         1.07         0.98         0.82           64         3.40         1.01         0.72         3.34         1.03         0.71           65         0.54         1.42         1.65         Deleted         0.61           66         1.13         1.46         1.63         Deleted         0.70           68         0.59         1.09         0.94         0.47         1.14         1.05           69         -0.13         1.12         1.23         -0.28         1.16         1.41           70         0.93         1.30         1.75         0.81         1.34         1.99           71                                                                                             |         |                  |      |      |         |         |        |
| 59         0.48         0.95         0.90         0.35         0.98         0.97           60         2.66         1.05         0.69         2.58         1.07         0.71           61         2.39         0.82         0.55         2.30         0.82         0.57           62         1.63         0.87         0.60         1.53         0.89         0.61           63         1.19         0.96         0.79         1.07         0.98         0.82           64         3.40         1.01         0.72         3.34         1.03         0.71           65         0.54         1.42         1.65         Deleted         0.61           66         1.13         1.46         1.63         Deleted         0.70           68         0.59         1.09         0.94         0.47         1.14         1.05           69         -0.13         1.12         1.23         -0.28         1.16         1.41           70         0.93         1.30         1.75         0.81         1.34         1.99           71         0.46         0.79         0.58         0.32         0.80         0.56           72                                                                                             |         |                  |      |      |         |         |        |
| 61       2.39       0.82       0.55       2.30       0.82       0.57         62       1.63       0.87       0.60       1.53       0.89       0.61         63       1.19       0.96       0.79       1.07       0.98       0.82         64       3.40       1.01       0.72       3.34       1.03       0.71         65       0.54       1.42       1.65       Deleted         66       1.13       1.46       1.63       Deleted         67       1.42       0.86       0.68       1.31       0.90       0.70         68       0.59       1.09       0.94       0.47       1.14       1.05         69       -0.13       1.12       1.23       -0.28       1.16       1.41         70       0.93       1.30       1.75       0.81       1.34       1.99         71       0.46       0.79       0.58       0.32       0.80       0.56         72       0.09       0.72       0.57       -0.05       0.73       0.57         73       0.34       0.82       0.69       0.21       0.82       0.69                                                                                                                                                                                                                    |         |                  | 0.95 |      |         |         |        |
| 62         1.63         0.87         0.60         1.53         0.89         0.61           63         1.19         0.96         0.79         1.07         0.98         0.82           64         3.40         1.01         0.72         3.34         1.03         0.71           65         0.54         1.42         1.65         Deleted         0.61           66         1.13         1.46         1.63         Deleted         0.70           68         0.59         1.09         0.94         0.47         1.14         1.05           69         -0.13         1.12         1.23         -0.28         1.16         1.41           70         0.93         1.30         1.75         0.81         1.34         1.99           71         0.46         0.79         0.58         0.32         0.80         0.56           72         0.09         0.72         0.57         -0.05         0.73         0.57           73         0.34         0.82         0.69         0.21         0.82         0.69                                                                                                                                                                                                    |         |                  |      |      |         |         |        |
| 63         1.19         0.96         0.79         1.07         0.98         0.82           64         3.40         1.01         0.72         3.34         1.03         0.71           65         0.54         1.42         1.65         Deleted         0.66         0.79         0.70           66         1.13         1.46         1.63         Deleted         0.70           68         0.59         1.09         0.94         0.47         1.14         1.05           69         -0.13         1.12         1.23         -0.28         1.16         1.41           70         0.93         1.30         1.75         0.81         1.34         1.99           71         0.46         0.79         0.58         0.32         0.80         0.56           72         0.09         0.72         0.57         -0.05         0.73         0.57           73         0.34         0.82         0.69         0.21         0.82         0.69                                                                                                                                                                                                                                                                     |         |                  |      |      |         |         |        |
| 64         3.40         1.01         0.72         3.34         1.03         0.71           65         0.54         1.42         1.65         Deleted           66         1.13         1.46         1.63         Deleted           67         1.42         0.86         0.68         1.31         0.90         0.70           68         0.59         1.09         0.94         0.47         1.14         1.05           69         -0.13         1.12         1.23         -0.28         1.16         1.41           70         0.93         1.30         1.75         0.81         1.34         1.99           71         0.46         0.79         0.58         0.32         0.80         0.56           72         0.09         0.72         0.57         -0.05         0.73         0.57           73         0.34         0.82         0.69         0.21         0.82         0.69                                                                                                                                                                                                                                                                                                                         |         |                  |      |      |         |         |        |
| 65         0.54         1.42         1.65         Deleted           66         1.13         1.46         1.63         Deleted           67         1.42         0.86         0.68         1.31         0.90         0.70           68         0.59         1.09         0.94         0.47         1.14         1.05           69         -0.13         1.12         1.23         -0.28         1.16         1.41           70         0.93         1.30         1.75         0.81         1.34         1.99           71         0.46         0.79         0.58         0.32         0.80         0.56           72         0.09         0.72         0.57         -0.05         0.73         0.57           73         0.34         0.82         0.69         0.21         0.82         0.69                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                  |      |      |         |         |        |
| 66         1.13         1.46         1.63         Deleted           67         1.42         0.86         0.68         1.31         0.90         0.70           68         0.59         1.09         0.94         0.47         1.14         1.05           69         -0.13         1.12         1.23         -0.28         1.16         1.41           70         0.93         1.30         1.75         0.81         1.34         1.99           71         0.46         0.79         0.58         0.32         0.80         0.56           72         0.09         0.72         0.57         -0.05         0.73         0.57           73         0.34         0.82         0.69         0.21         0.82         0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                  |      |      | 5.5 .   |         |        |
| 68         0.59         1.09         0.94         0.47         1.14         1.05           69         -0.13         1.12         1.23         -0.28         1.16         1.41           70         0.93         1.30         1.75         0.81         1.34         1.99           71         0.46         0.79         0.58         0.32         0.80         0.56           72         0.09         0.72         0.57         -0.05         0.73         0.57           73         0.34         0.82         0.69         0.21         0.82         0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 66      | 1.13             | 1.46 | 1.63 |         | Deleted |        |
| 69         -0.13         1.12         1.23         -0.28         1.16         1.41           70         0.93         1.30         1.75         0.81         1.34         1.99           71         0.46         0.79         0.58         0.32         0.80         0.56           72         0.09         0.72         0.57         -0.05         0.73         0.57           73         0.34         0.82         0.69         0.21         0.82         0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                  |      |      |         |         |        |
| 70         0.93         1.30         1.75         0.81         1.34         1.99           71         0.46         0.79         0.58         0.32         0.80         0.56           72         0.09         0.72         0.57         -0.05         0.73         0.57           73         0.34         0.82         0.69         0.21         0.82         0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                  |      |      |         |         |        |
| 71         0.46         0.79         0.58         0.32         0.80         0.56           72         0.09         0.72         0.57         -0.05         0.73         0.57           73         0.34         0.82         0.69         0.21         0.82         0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                  |      |      |         |         |        |
| 72         0.09         0.72         0.57         -0.05         0.73         0.57           73         0.34         0.82         0.69         0.21         0.82         0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                  |      |      |         |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72      | 0.09             | 0.72 | 0.57 | -0.05   | 0.73    | 0.57   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 73      | 0.34             | 0.82 | 0.69 | 0.21    |         |        |

(Continued)

Table 1. (Continued).

| 83-item version |         |       |        | 77-item version |       |        |  |
|-----------------|---------|-------|--------|-----------------|-------|--------|--|
| ltem            | Measure | Infit | Outfit | Measure         | Infit | Outfit |  |
| 74              | 1.51    | 1.03  | 1.76   | 1.40            | 1.05  | 1.77   |  |
| 75              | 1.21    | 1.08  | 1.13   | 1.10            | 1.10  | 1.37   |  |
| 76              | 2.82    | 1.04  | 0.92   | 2.75            | 1.06  | 0.94   |  |
| 77              | 2.91    | 1.15  | 0.85   | 2.84            | 1.17  | 0.90   |  |
| 78              | 2.11    | 0.95  | 0.58   | 2.02            | 0.97  | 0.59   |  |
| 79              | 3.19    | 1.01  | 0.89   | 3.12            | 1.03  | 0.95   |  |
| 80              | 2.01    | 1.14  | 0.94   | 1.91            | 1.17  | 1.00   |  |
| 81              | 3.19    | 1.15  | 1.17   | 3.12            | 1.18  | 1.19   |  |
| 82              | 2.70    | 1.27  | 1.02   | 2.62            | 1.31  | 1.03   |  |
| 83              | 2.50    | 1.28  | 1.05   | 2.42            | 1.31  | 1.05   |  |

for the 83-item version, F(7, 248) = 70.89, p < .001 and the 77item version, F(7, 248) = 72.77, p < .001. Pairwise comparison (with Bonferroni adjustment) indicated that the mean scores of each age group differed significantly from other age groups, except the immediately adjacent age groups. The results are shown in Table 3.

#### Analysis by Developmental Status

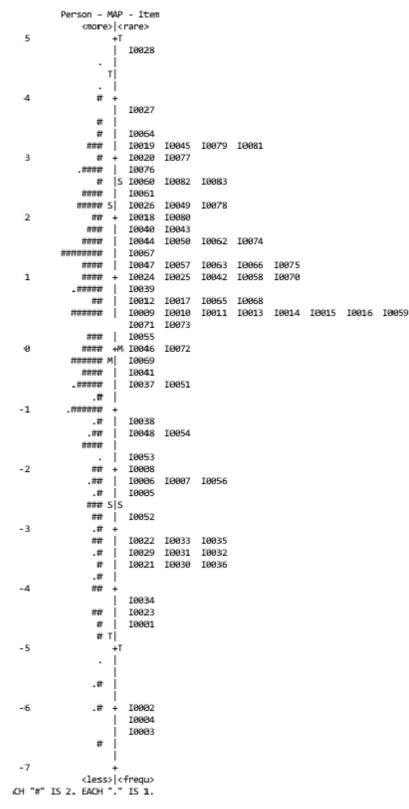
For the analyses in this section, due to multiple comparisons, the Bonferroni adjusted alpha level was 0.0016. Independent *t*-tests indicated that there were significant differences between the children with cognitive delay (CAS sample) and those with typical development (MCHC sample) in all but one age group, with the latter group attaining higher scores. The sensitivity and specificity values and the areas under the curve were above 0.70 in most age groups, except the 36–38 months and 30–32 months groups. The details are in Table 4.

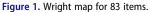
There were some demographic differences between children with cognitive delay and those with typical development in some age groups. The details are in Table 5. These demographic variables were treated as covariates within the specific age groups in the ANCOVA analyses on the difference in Cognition domain scores between children with cognitive delay and children with typical development.

For the 39–41 months, 33–35 months, 27–29 months, 24–26 months, and 21–23 months groups, ANCOVA results were significant for the 83-item version and the 77-item version. In all cases, the scores of the cognitive delay group were lower than that of the typical development group. However, ANCOVA results were not significant for the 36–38 months, 30–32 months, and 18–20 months groups for the 83-item version and the 77-item version. The details are in Table 4.

# Reliability

The reliability (KR-20) estimates of the 83-item version and the 77item version of the Cognition Domain were both 0.97. The interrater reliability (Kappa) between field testers ranged from 0.90 to 1.00.


#### Discussion


In terms of the measurement properties of the Cognition domain, Rasch analysis results supported the unidimensionality of the scale. Unidimensionality is important in test development because we can only understand the nature of the test if we can isolate the one dimension that is being measured.<sup>19</sup> The scores of the items could then be meaningfully summed up to form a total score as they all measure one dimension. For item difficulty and targeting, the Wright map indicated that the scale could target the abilities of the children though there were fewer items at either end of the ability range. This suggested that the range of test items was age-appropriate for children aged 18–41 months.

Regarding construct validity, Hypothesis 1 on the differentiation of children from different age groups was largely supported. The overall ANCOVA results were significant for both the 83-item version and 77-item version. The Cognition domain could differentiate children from different age groups, except the adjacent age groups. The overall pattern indicated that older children attained higher scores than younger children. The lack of differentiation in the adjacent age groups might be due to two reasons. First, there were not enough items to map out the differences between the two adjacent age groups. Second, the items might not be sensitive enough to detect the differences. In one of the validation studies of the Bayley III, there were decreases in scores over adjacent older age groups in some cases, though the decreases were not significant.<sup>20</sup> However, in our present study, there was a consistent trend of an increase in scores across age groups, with older children attaining higher scores. Hypothesis 2 on the differentiation of children with typical development versus those with cognitive delay was largely supported. In most age groups, children with cognitive delay scored significantly below their age peers with typical development. The sensitivity and specificity values and areas under the curve were satisfactory. This provided some evidence that the tool could be used to identify children with cognitive delay.

For reliability, the internal consistency (KR-20) of both the 83-item version and 77-item version was above .90. Interrater reliability was also above .90.

The Cognition domain of the HKCAS-T is the first attempt of the research team to develop an indigenous psychometric tool for assessment of the cognitive functioning of toddlers in a Chinese community. In addition to testing for differences in age and developmental status, Rasch analysis, one of the strictest item response theory models, has been used to improve the precision and quality of the instrument. By including only items which fit the Rasch model, the precision of measurement of a test can be improved.<sup>21</sup> The results of the present study indicated satisfactory psychometric properties in terms of unidimensionality, item difficulty, reliability, and validity. As it is not a translation from tests developed in other languages, there are no issues about item equivalence or differential item functioning because of different language versions. It is hoped that with the use of the tool, professionals can provide a reliable assessment of the cognitive strength and deficits of toddlers, so that rehabilitation service can be given as early as possible. The tool could potentially be useful in epidemiological or research studies to map out the distribution of children's development. It could also be a useful tool for the evaluation of the effectiveness of early intervention programs, and to track the development of children.





# Limitations

First, the response rate was low and this might affect the representativeness of the sample. A large majority (82.9% in the MCHC sample and 65.8% in the CAS sample) of the sample reported household income above HK\$20,000 and the median household income in Hong Kong is HK\$26,500. It is likely that

children from low-income families were less well represented in the sample. Second, due to difficulties in recruitment, the number of children with cognitive delay was less than that based on our initial sample size estimation in some age groups, and this might have affected the power of the study. Third, though the Cognition domain items could differentiate children from different age groups and children with different

|       | Person -                        | ΜΔΡ | - Item         |                |       |       |        |       |       |       |
|-------|---------------------------------|-----|----------------|----------------|-------|-------|--------|-------|-------|-------|
|       |                                 |     | rare>          |                |       |       |        |       |       |       |
| 5     |                                 | +   |                |                |       |       |        |       |       |       |
|       |                                 | Т   | 10028          |                |       |       |        |       |       |       |
|       | #                               |     |                |                |       |       |        |       |       |       |
|       |                                 |     |                |                |       |       |        |       |       |       |
| 4     |                                 | +   |                |                |       |       |        |       |       |       |
|       |                                 |     | 10027          |                |       |       |        |       |       |       |
|       | #                               |     | 10045          | 19964          |       |       |        |       |       |       |
| 3     |                                 |     |                | 10004          | T9979 | 19981 |        |       |       |       |
| 2     | .77                             |     | 10076          |                | 20072 | 10001 |        |       |       |       |
|       |                                 |     |                | 10082          | I0083 |       |        |       |       |       |
|       | ******                          | sj  | 10061          |                |       |       |        |       |       |       |
| 2     |                                 | +   | 10018          | 10026          | 10049 | 10078 | 10080  |       |       |       |
|       | #                               |     |                | I0043          |       |       |        |       |       |       |
|       |                                 |     |                | 10050          | 10062 | 10074 |        |       |       |       |
|       |                                 |     |                | 10067          |       |       |        |       |       |       |
| 1     |                                 |     |                | 10057          |       |       | 10070  |       |       |       |
|       |                                 |     |                | 10025<br>10017 |       | T0028 | 109/9  |       |       |       |
|       |                                 |     |                |                |       | T9913 | 1001/1 | 10015 | 19916 | 10050 |
|       |                                 |     |                | 10073          | 10011 | 20020 | 20024  | 20020 | 20020 | 20032 |
| 9     | ***                             | +M  | 10055          |                |       |       |        |       |       |       |
|       |                                 |     | 10046          |                |       |       |        |       |       |       |
|       | ******                          |     |                |                |       |       |        |       |       |       |
|       | ****                            |     | 10037          | 10051          |       |       |        |       |       |       |
| -1    |                                 |     |                |                |       |       |        |       |       |       |
|       |                                 |     | 10038          |                |       |       |        |       |       |       |
|       |                                 |     | 10048          |                |       |       |        |       |       |       |
| -2    |                                 |     | 10054<br>10053 |                |       |       |        |       |       |       |
| -2    |                                 |     | 10005          |                |       |       |        |       |       |       |
|       | #                               |     |                | 10007          | 10056 |       |        |       |       |       |
|       |                                 |     |                |                |       |       |        |       |       |       |
| -3    |                                 |     | 10052          |                |       |       |        |       |       |       |
|       | .#                              |     |                |                |       |       |        |       |       |       |
|       | #                               |     | 10035          |                |       |       |        |       |       |       |
|       | #                               |     |                | 10031          | 10032 | 10033 |        |       |       |       |
| -4    |                                 |     | 10030          | T663P          |       |       |        |       |       |       |
|       | <del>##</del>                   |     | 10034          |                |       |       |        |       |       |       |
|       |                                 |     | 20004          |                |       |       |        |       |       |       |
| -5    |                                 | ÷   |                |                |       |       |        |       |       |       |
|       | #                               | T   |                |                |       |       |        |       |       |       |
|       |                                 | т   |                |                |       |       |        |       |       |       |
|       | .##                             |     |                |                |       |       |        |       |       |       |
| -6    |                                 | +   |                |                |       |       |        |       |       |       |
|       | . #                             |     |                |                |       |       |        |       |       |       |
|       |                                 |     | 10002          |                |       |       |        |       |       |       |
| -7    | #                               | +   | 10001          |                |       |       |        |       |       |       |
|       |                                 | 1   | 10003          |                |       |       |        |       |       |       |
|       |                                 | Ì   |                |                |       |       |        |       |       |       |
|       |                                 | Ι   |                |                |       |       |        |       |       |       |
| -8    |                                 | +   | <b>C</b>       |                |       |       |        |       |       |       |
| CH "4 | <les:<br>" IS 2. EACH</les:<br> | > < | frequ>         |                |       |       |        |       |       |       |
|       | . 192, 0401                     | •   |                |                |       |       |        |       |       |       |
|       |                                 |     |                |                |       |       |        |       |       |       |

Figure 2. Wright map for 77 items.

developmental status, there is still no information whether it correlates with other existing measures of child cognitive development. A second study is being planned to examine the correlation of the Cognition domain items with existing measures such as M-P-R.<sup>2</sup> Fourth, the predictive validity and the test-retest reliability of the Cognition domain have not been investigated. Fifth, the rating system was dichotomous (attained versus not attained) and no partial credit was given to children with emerging skills. These children could have been disadvantaged in the assessment of their skills. A future revision of the test should consider the use of the partial credit system. Sixth, the HKCAS-T field testers were aware of the developmental status of the participants (cognitive delay or not) and this might have affected their handling of the children and assessment results.

#### Conclusions

There is initial evidence that the Cognition domain of the Hong Kong Comprehensive Assessment Scales for Toddlers

# Table 2. Demographic characteristics of participants.

|                                                          |                           | CAS sample    |                       |
|----------------------------------------------------------|---------------------------|---------------|-----------------------|
|                                                          | MCHC sample ( $n = 258$ ) | (n = 87)      | Significance          |
| Sex of child – boy                                       | 128 (49.6%)               | 61 (70.1%)    | $\chi^2(1) = 11.04,$  |
| Sex of child – girl                                      | 130 (50.4%)               | 26 (29.9%)    | p = .001              |
| Child's education – no schooling                         | 137 (53.1%)               | 39 (44.8%)    | $\chi^2(1) = 1.78,$   |
| Child's education – preschool                            | 121 (46.9%)               | 48 (55.2%)    | <i>p</i> = .182       |
| Language used – Cantonese                                | 251 (98.0%)               | 82 (96.5%)    | $\chi^2(2) = 1.36,$   |
| Language used – Mandarin                                 | 2 (0.8%)                  | 2 (2.4%)      | p = .507              |
| Language used – English                                  | 3 (1.2%)                  | 1 (1.2%)      |                       |
| Family type – nuclear                                    | 161 (62.4%)               | 55 (63.2%)    | $\chi^2$ (1) = 0.02,  |
| Family type – others                                     | 97 (37.6%)                | 32 (36.8%)    | p = .892              |
| Marital relationship – married                           | 238 (92.2%)               | 75 (86.2%)    | $\chi^2(1) = 2.82,$   |
| Marital relationship – single/separated/divorced/widowed | 20 (7.8%)                 | 12 (13.8%)    | <i>p</i> = .093       |
| Mother's education $- \le 9$ years                       | 44 (17.3%)                | 22 (28.9%)    | $\chi^2$ (1) = 5.01,  |
| Mother's education $- > 9$ years                         | 211 (82.7%)               | 54 (71.1%)    | <i>p</i> = .025       |
| Father's education $- \le 9$ years                       | 30 (11.8%)                | 18 (24.3%)    | $\chi^2(1) = 7.18,$   |
| Father's education $- > 9$ years                         | 224 (88.2%)               | 56 (75.7%)    | <i>p</i> = .007       |
| Family income – ≤ HK\$19,999                             | 43 (17.1%)                | 26 (34.2%)    | $\chi^2$ (1) = 10.22, |
| Family income – $\geq$ HK\$20,000                        | 208 (82.9%)               | 50 (65.8%)    | <i>p</i> = .001       |
| Child's age (months)                                     | 30.01 (6.92)              | 31.06 (6.95)  | t (343) = 1.22,       |
|                                                          |                           |               | p = .222              |
| Child's length of residence in Hong Kong (months)        | 29.08 (7.70)              | 28.82 (9.60)  | t (270) = 0.21,       |
|                                                          |                           |               | p = .832              |
| Mother's length of residence in Hong Kong (years)        | 27.87 (12.33)             | 23.32 (15.35) | t (296) = 2.51,       |
|                                                          |                           |               | <i>p</i> = .013       |
| Father's length of residence in Hong Kong (years)        | 35.51(8.81)               | 37.15 (13.37) | t (277) = 1.13,       |
|                                                          |                           |               | p = .259              |
| Number of siblings                                       | 1.60 (0.65)               | 1.78 (0.82)   | t (331) = 2.08,       |
|                                                          |                           |               | p = .038              |

 Table 3. Mean and standard deviation scores by age group.

| Age group        | п  | Mean  | Standard deviation | Group differences                            |
|------------------|----|-------|--------------------|----------------------------------------------|
| 83-item version  |    |       |                    |                                              |
| (1) 18–20 months | 32 | 11.38 | 5.93               | (1) versus (2), (3), (4), (5), (6), (7), (8) |
| (2) 21–23 months | 32 | 23.69 | 13.99              | (2) versus (1), (4), (5), (6), (7), (8)      |
| (3) 24–26 months | 32 | 27.69 | 9.96               | (3) versus (1), (4), (5), (6), (7), (8)      |
| (4) 27–29 months | 32 | 38.53 | 8.45               | (4) versus (1), (2), (3), (6), (7), (8)      |
| (5) 30–32 months | 32 | 42.59 | 12.52              | (5) versus (1), (2), (3), (6), (7), (8)      |
| (6) 33–35 months | 32 | 52.66 | 13.98              | (6) versus (1), (2), (3), (4), (5), (8)      |
| (7) 36–38 months | 32 | 54.03 | 13.68              | (7) versus (1), (2), (3), (4), (5)           |
| (8) 39-41 months | 34 | 62.59 | 11.13              | (8) versus (1), (2), (3), (4), (5), (6)      |
| 77-item version  |    |       |                    |                                              |
| (1) 18–20 months | 32 | 8.66  | 5.37               | (1) versus (2), (3), (4), (5), (6), (7), (8) |
| (2) 21-23 months | 32 | 19.84 | 12.86              | (2) versus (1), (4), (5), (6), (7), (8)      |
| (3) 24–26 months | 32 | 23.63 | 9.49               | (3) versus (1), (4), (5), (6), (7), (8)      |
| (4) 27–29 months | 32 | 34.03 | 8.09               | (4) versus (1), (2), (3), (6), (7), (8)      |
| (5) 30–32 months | 32 | 37.81 | 12.34              | (5) versus (1), (2), (3), (6,), (7), (8)     |
| (6) 33–35 months | 32 | 47.72 | 13.34              | (6) versus (1), (2), (3), (4), (5), (8)      |
| (7) 36–38 months | 32 | 49.31 | 13.09              | (7) versus (1), (2), (3), (4), (5)           |
| (8) 39-41 months | 34 | 57.68 | 10.41              | (8) versus (1), (2), (3), (4), (5), (6)      |

| Table 4. Diagnostic accuracy | and comparison | between the MCHC | sample and CAS | sample. |
|------------------------------|----------------|------------------|----------------|---------|
|                              |                |                  |                |         |

| Age group       | Ν  | ICHC sample   | (  | CAS sample    | Cutoff score | Sensitivity | Specificity | Area under curve | t and p value                         | F and p value                             |
|-----------------|----|---------------|----|---------------|--------------|-------------|-------------|------------------|---------------------------------------|-------------------------------------------|
| 83-item version | 1  |               |    |               |              |             |             |                  |                                       |                                           |
|                 | n  | Mean (sd)     | n  | Mean (sd)     |              |             |             |                  |                                       |                                           |
| 18–20 months    | 32 | 11.38 (5.93)  | 8  | 2.75 (2.31)   | 3.5          | 0.75        | 0.94        | 0.93             | <i>t</i> (38) = 4.00, <i>p</i> < .001 | <i>F</i> (1, 33) = 4.67, <i>p</i> = .035  |
| 21–23 months    | 32 | 23.69 (13.99) | 12 | 2.42 (2.27)   | 5.5          | 0.92        | 0.91        | 0.96             | <i>t</i> (42) = 5.21, <i>p</i> < .001 | <i>F</i> (1, 33) = 18.29, <i>p</i> < .001 |
| 24–26 months    | 32 | 27.69 (9.96)  | 9  | 9.22 (8.36)   | 14.5         | 0.89        | 0.94        | 0.93             | t (39) = 5.07, p < .001               | <i>F</i> (1, 38) = 24.45, <i>p</i> < .001 |
| 27–29 months    | 32 | 38.53 (8.45)  | 10 | 13.50 (10.80) | 22.5         | 0.90        | 1.00        | 0.97             | <i>t</i> (40) = 7.65, <i>p</i> < .001 | <i>F</i> (1, 40) = 58.46, <i>p</i> < .001 |
| 30–32 months    | 32 | 42.59 (12.52) | 12 | 25.17 (14.11) | 34.5         | 0.67        | 0.66        | 0.80             | <i>t</i> (42) = 3.97, <i>p</i> < .001 | <i>F</i> (1, 38) = 8.49, <i>p</i> = .006  |
| 33–35 months    | 32 | 52.66 (13.98) | 9  | 22.44 (9.40)  | 41.0         | 1.00        | 0.84        | 0.93             | <i>t</i> (39) = 5.30, <i>p</i> < .001 | <i>F</i> (1, 32) = 14.74, <i>p</i> = .001 |
| 36–38 months    | 32 | 54.03 (13.68) | 12 | 41.08 (17.73) | 51.5         | 0.67        | 0.56        | 0.71             | <i>t</i> (42) = 2.58, <i>p</i> = .014 | <i>F</i> (1, 39) = 2.76, <i>p</i> = .105  |
| 39–41 months    | 34 | 62.59 (11.13) | 15 | 35.40 (16.43) | 52.0         | 0.80        | 0.85        | 0.91             | <i>t</i> (47) = 6.78, <i>p</i> < .001 | <i>F</i> (1, 44) = 37.41, <i>p</i> < .001 |
| 77-item version | 1  |               |    |               |              |             |             |                  |                                       |                                           |
| 18–20 months    | 32 | 8.66 (5.37)   | 8  | 1.25 (2.05)   | 2.0          | 0.75        | 0.94        | 0.93             | <i>t</i> (38) = 3.80, <i>p</i> = .001 | <i>F</i> (1, 33) = 3.37, <i>p</i> = .075  |
| 21–23 months    | 32 | 19.84 (12.86) | 12 | 1.58 (1.88)   | 4.5          | 0.92        | 0.91        | 0.96             | <i>t</i> (42) = 4.86, <i>p</i> < .001 | <i>F</i> (1, 33) = 15.24, <i>p</i> < .001 |
| 24–26 months    | 32 | 23.63 (9.49)  | 9  | 7.33 (6.89)   | 12.5         | 0.89        | 0.91        | 0.93             | <i>t</i> (39) = 4.79, <i>p</i> < .001 | <i>F</i> (1, 38) = 22.05, <i>p</i> < .001 |
| 27–29 months    | 32 | 34.03 (8.09)  | 10 | 10.50 (9.74)  | 18.0         | 0.90        | 1.00        | 0.97             | <i>t</i> (40) = 7.65, <i>p</i> < .001 | <i>F</i> (1, 40) = 58.57, <i>p</i> < .001 |
| 30–32 months    | 32 | 37.81 (12.34) | 12 | 22.42 (12.96) | 31.0         | 0.67        | 0.59        | 0.79             | <i>t</i> (42) = 3.64, <i>p</i> = .001 | <i>F</i> (1, 38) = 6.79, <i>p</i> = .013  |
| 33–35 months    | 32 | 47.72 (13.34) | 9  | 22.44 (9.40)  | 36.5         | 1.00        | 0.84        | 0.93             | t (39) = 5.30, p < .001               | <i>F</i> (1, 32) = 15.04, <i>p</i> < .001 |
| 36–38 months    | 32 | 49.31 (13.09) | 12 | 36.75 (17.04) | 46.5         | 0.67        | 0.59        | 0.70             | <i>t</i> (42) = 2.61, <i>p</i> = .013 | F (1, 39) = 2.93, p = .095                |
| 39-41 months    | 34 | 57.68 (10.41) | 15 | 31.80 (15.60) | 47.5         | 0.80        | 0.83        | 0.91             | t (47) = 6.85, <i>p</i> < .001        | <i>F</i> (1, 44) = 38.73, <i>p</i> < .001 |

# Table 5. Demographic Characteristics of the MCHC Sample and CAS Sample by Age Group

|                                                          | MCHC sample      | CAS sample       | Significance                    |
|----------------------------------------------------------|------------------|------------------|---------------------------------|
| 3 – 20 months                                            | (n = 32)         | (n=8)            | <b>3</b>                        |
| ex of child – boy                                        | 16 (50.0%)       | 5 (62.5%)        | $\chi^2$ (1) = 0.40,            |
| ex of child – girl                                       | 16 (50.0%)       | 3 (37.5%)        | <i>p</i> = 0.698                |
| ognitive delay between 1 to 2 sd                         | NA               | 5 (62.5%)        | NA                              |
| ognitive delay > 2 sd                                    | NA               | 3 (37.5%)        | NA                              |
| hild's education – no schooling                          | 27 (84.4%)       | 6 (75.0%)        | $\chi^2(1) = 0.39,$             |
| nild's education – preschool                             | 5 (15.6%)        | 2 (25.0%)        | p = 0.611                       |
| anguage used – Cantonese                                 | 29 (93.5%)       | 6 (100.0%)       | $\chi^2(1) = 0.41,$             |
| anguage used – English                                   | 2 (6.5%)         | 0 (0.0%)         | p = 1.000                       |
| amily type – nuclear                                     | 19 (59.4%)       | 5 (62.5%)        | $\chi^2$ (1) = 0.03,            |
| amily type – others                                      | 13 (40.6%)       | 3 (37.5%)        | p = 1.000                       |
| arital relationship – married                            | 28 (87.5%)       | 6 (75.0%)        | $\chi^2(1) = 0.78,$             |
| arital relationship – single/separated/divorced/widowed  | 4 (12.5%)        | 2 (25.0%)        | p = 0.580                       |
| other's education $- \le 9$ years                        | 7 (22.6%)        | 0 (0.0%)         | $\chi^2(1) = 1.13,$             |
| other's education $- > 9$ years                          | 24 (77.4%)       | 4 (100.0%)       | p = 0.562                       |
| ather's education $- \le 9$ years                        | 6 (19.4%)        | 0 (0.0%)         | $\chi^2(1) = 0.93,$             |
| ther's education – > 9 years                             | 25 (80.6%)       | 4 (100.0%)       | p = 1.000                       |
| amily income – ≤ HK\$19,999                              | 4 (13.3%)        | 0 (0.0%)         | $\chi^2(1) = 0.90,$             |
| mily income – $\geq$ HK\$20,000                          | 26 (86.7%)       | 6 (100.0%)       | p = 1.000                       |
| nild's age (months)                                      | 19.50 (8.23)     | 20.49 (0.64)     | t(38) = 3.16,                   |
|                                                          |                  |                  | p = 0.003                       |
| hild's length of residence in Hong Kong (months)         | 19.32 (1.01)     | 17.17 (5.53)     | t(35) = 2.11,                   |
|                                                          |                  |                  | p = 0.384                       |
| other's length of residence in Hong Kong (years)         | 27.34 (11.99)    | 22.00 (19.00)    | p = 0.304<br>t (30) = 0.70,     |
| is and a second of residence in hong hong (years)        | 27.31 (11.32)    | 22.00 (19.00)    | p = 0.489                       |
| ather's length of residence in Hong Kong (years)         | 34.85 (7.08)     | 39.00 (20.52)    | p = 0.489<br>t (28) = 0.78,     |
| active a residence in hong tong (years)                  | (00. 1) CO.FC    | 57.00 (20.52)    | p = 0.442                       |
| umber of siblings                                        | 1.42 (0.56)      | 2.33 (0.52)      | p = 0.442<br>t (35) = 3.68,     |
| uniber of sibilitys                                      | 1.42 (0.50)      | 2.33 (0.32)      | p = 0.001                       |
| 1 –23 months                                             | ( <i>n</i> = 32) | ( <i>n</i> = 12) | <i>p</i> = 0.001                |
| ex of child – boy                                        | 16 (50.0%)       | 9 (75.0%)        | $\chi^2$ (1) = 2.22,            |
| ex of child – bby                                        | 16 (50.0%)       |                  | $\chi$ (1) = 2.22,<br>p = 0.136 |
|                                                          | NA               | 3 (25.0%)        | p = 0.130<br>NA                 |
| ognitive delay between 1 to 2 sd                         | NA               | 8 (66.7%)        |                                 |
| ognitive delay > 2 sd<br>bild/c advection - no schooling |                  | 4 (33.3%)        | $\chi^{2}(1) = 0.46$            |
| hild's education – no schooling                          | 29 (90.6%)       | 10 (83.3%)       |                                 |
| hild's education – preschool                             | 3 (9.4%)         | 2 (16.7%)        | p = 0.603                       |
| anguage used – Cantonese                                 | 32 (100.0%)      | 11 (91.7%)       | $\chi^2(1) = 2.73,$             |
| anguage used – Mandarin                                  | 0 (0.0%)         | 1 (8.3%)         | p = 0.273                       |
| amily type – nuclear                                     | 21 (65.6%)       | 6 (50.0%)        | $\chi^2(1) = 0.90,$             |
| amily type – others                                      | 11 (34.4%)       | 6 (50.0%)        | p = 0.489                       |
| 1arital relationship – married                           | 29 (90.6%)       | 11 (91.7%)       | $\chi^2(1) = 0.01,$             |
| larital relationship – single/separated/divorced/widowed | 3 (9.4%)         | 1 (8.3%)         | p = 1.000                       |
| lother's education $- \le 9$ years                       | 5 (15.6%)        | 1 (10.0%)        | $\chi^2(1) = 0.20,$             |
| lother's education – > 9 years                           | 27 (84.4%)       | 9 (90.0%)        | p = 1.000                       |
| ather's education – $\leq$ 9 years                       | 7 (21.9%)        | 1 (11.1%)        | $\chi^2(1) = 0.52,$             |
| a ther's education - > 9 years                           | 25 (78.1%)       | 8 (88.9%)        | p = 0.659                       |
| amily income – ≤ HK\$19,999                              | 4 (12.9%)        | 4 (36.4%)        | $\chi^2(1) = 2.90,$             |
| amily income – $\geq$ HK\$20,000                         | 27 (87.1%)       | 7 (63.6%)        | <i>p</i> = 0.174                |
| hild's age (months)                                      | 22.86 (0.85)     | 22.50 (0.91)     | t(42) = 1.24,                   |
|                                                          |                  |                  | p = 0.222                       |
| hild's length of residence in Hong Kong (months)         | 22.41 (1.02)     | 22.38 (0.74)     | t(35) = 0.10,                   |
|                                                          |                  | - *              | p = 0.921                       |
| other's length of residence in Hong Kong (years)         | 28.21 (11.23)    | 26.78 (18.23)    | t(35) = 0.27,                   |
| J                                                        |                  |                  | p = 0.777                       |
| ather's length of residence in Hong Kong (years)         | 33.67 (8.15)     | 44.00 (14.46)    | t(34) = 2.69,                   |
|                                                          |                  |                  | p = 0.011                       |
| umber of siblings                                        | 1.50 (0.84)      | 1.73 (0.79)      | p = 0.011<br>t (41) = 0.79,     |
|                                                          |                  |                  | p = 0.437                       |
| 4 – 26 months                                            | ( <i>n</i> = 32) | ( <i>n</i> = 9)  |                                 |
| ex of child – boy                                        | 16 (50.0%)       | 5 (55.6%)        | $\chi^2$ (1) = 0.09,            |
| ex of child – girl                                       | 16 (50.0%)       | 4 (44.4%)        | <i>p</i> = 1.00                 |
| ognitive delay between 1 to 2 sd                         | NA               | 3 (33.3%)        | NA                              |
| ognitive delay > 2 sd                                    | NA               | 6 (66.7%)        | NA                              |
| hild's education – no schooling                          | 22 (68.8%)       | 5 (55.6%)        | $\chi^2$ (1) = 0.54,            |
| hild's education – preschool                             | 10 (31.3%)       | 4 (44.4%)        | p = 0.692                       |
| nguage used – Cantonese                                  | 31 (96.9%)       | 9 (100.0%)       | $\chi^2(1) = 0.29,$             |
| anguage used – English                                   | 1 (3.1%)         | 0 (0.0%)         | p = 1.00                        |
| amily type – nuclear                                     | 17 (53.1%)       | 6 (66.7%)        | $\chi^2(1) = 0.52,$             |
| amily type – others                                      | 15 (46.9%)       | 3 (33.3%)        | p = 0.706                       |
| arital relationship – married                            | 32 (100.0%)      | 9 (100.0%)       | р — 0.700<br>NA                 |
| other's education $- \le 9$ years                        | 6 (18.8%)        | 1 (14.3%)        | $\chi^2(1) = 0.08,$             |
|                                                          | 26 (81.3%)       | 6 (85.7%)        | p = 1.00                        |
| lother's education – > 9 years                           | 20 (81.3%)       |                  |                                 |

# Table 5. (Continued).

|                                                       | MCHC sample      | CAS sample                             | Significance                             |
|-------------------------------------------------------|------------------|----------------------------------------|------------------------------------------|
| ther's education $- \le 9$ years                      | 2 (6.3%)         | 1 (14.3%)                              | $\chi^2(1) = 0.52,$                      |
| ther's education $- > 9$ years                        | 30 (93.8%)       | 6 (85.7%)                              | p = 0.457                                |
| mily income – $\leq$ HK\$19,999                       | 4 (12.9%)        | 1 (11.1%)                              | $\chi^2(1) = 0.02,$                      |
| mily income – $\geq$ HK\$20,000                       | 27 (87.1%)       | 8 (88.9%)                              | p = 1.00                                 |
| nild's age (months)                                   | 25.22 (0.81)     | 25.69 (0.80)                           | t(39) = 1.55,                            |
| ind s uge (montais)                                   | 25.22 (0.01)     | 23.03 (0.00)                           | p = 0.130                                |
| ild's length of residence in Hong Kong (months)       | 23.82 (5.42)     | 24.25 (0.50)                           | t(24) = 0.16                             |
| ind stength of residence in hong tong (months)        | 23.02 (3.42)     | 24.25 (0.50)                           | p = 0.877                                |
| ather's length of residence in Henry Kong (vests)     | 28.86 (12.20)    | 20.00 (15.12)                          | •                                        |
| other's length of residence in Hong Kong (years)      | 28.86 (12.29)    | 30.00 (15.12)                          | t(31) = 0.19,                            |
|                                                       |                  |                                        | p = 0.854                                |
| her's length of residence in Hong Kong (years)        | 34.63 (14.14)    | 38.20 (5.07)                           | t(30) = 0.76,                            |
|                                                       |                  |                                        | <i>p</i> = 0.452                         |
| mber of siblings                                      | 1.41 (0.50)      | 2.33 (0.87)                            | t(39) = 4.14,                            |
|                                                       |                  |                                        | <i>p</i> < 0.001                         |
| - 29 months                                           | ( <i>n</i> = 32) | ( <i>n</i> = 10)                       |                                          |
| c of child – boy                                      | 16 (50.0%)       | 8 (80.0%)                              | $\chi^2(1) = 2.80,$                      |
| of child – girl                                       | 16 (50.0%)       | 2 (20.0%)                              | p = 0.174                                |
| gnitive delay between 1 to 2 sd                       | NA               | 4 (40.0%)                              | NA                                       |
| printive delay $> 2$ sd                               | NA               | 6 (60.0%)                              | NA                                       |
|                                                       |                  |                                        |                                          |
| ld's education – no schooling                         | 19 (59.4%)       | 3 (30.0%)                              | $\chi^2(1) = 2.64,$                      |
| ld's education – preschool                            | 13 (40.6%)       | 7 (70.0%)                              | p = 0.152                                |
| guage used – Cantonese                                | 31 (100.0%)      | 10 (100.0%)                            | NA                                       |
| nily type – nuclear                                   | 20 (62.5%)       | 3 (30.0%)                              | $\chi^2$ (1) = 3.25,                     |
| nily type – others                                    | 12 (37.5%)       | 7 (70.0%)                              | p = 0.143                                |
| rital relationship – married                          | 31 (96.9%)       | 9 (90.0%)                              | $\chi^2(1) = 0.79,$                      |
| ital relationship – single/separated/divorced/widowed | 1 (3.1%)         | 1 (10.0%)                              | p = 0.424                                |
| ther's education $- \le 9$ years                      | 8 (25.8%)        | 3 (33.3%)                              | $\chi^2(1) = 0.20,$                      |
| ther's education – > 9 years                          | 23 (74.2%)       | 6 (66.7%)                              | p = 0.686                                |
| her's education $-\leq 9$ years                       | 4 (12.9%)        | 2 (22.2%)                              | $\chi^2 (1) = 0.48,$                     |
|                                                       | . ,              |                                        |                                          |
| her's education $- > 9$ years                         | 27 (87.1%)       | 7 (77.8%)                              | p = 0.60                                 |
| nily income – $\leq$ HK\$19,999                       | 5 (16.1%)        | 4 (50.0%)                              | $\chi^2(1) = 4.11,$                      |
| nily income – $\geq$ HK\$20,000                       | 26 (83.9%)       | 4 (50.0%)                              | <i>p</i> = 0.065                         |
| ld's age (months)                                     | 28.42 (0.85)     | 28.66 (0.57)                           | t(40) = 0.83,                            |
|                                                       |                  |                                        | <i>p</i> = 0.413                         |
| ld's length of residence in Hong Kong (months)        | 28.13 (1.39)     | 28.25 (0.71)                           | t(30) = 0.24,                            |
|                                                       |                  |                                        | p = 0.811                                |
| ther's length of residence in Hong Kong (years)       | 28.70 (12.34)    | 22.60 (13.55)                          | t(38) = 1.32,                            |
| iner stength of restactive in riong forig (jeals)     | 2000 (1210.1)    | 22100 (10100)                          | p = 0.194                                |
| her's length of residence in Hong Kong (years)        | 35.77 (7.97)     | 30.00 (14.75)                          | p = 0.194<br>t (36) = 1.50,              |
| her's length of residence in hong kong (years)        | 33.77 (7.97)     | 50.00 (14.75)                          |                                          |
|                                                       | 1 74 (0 (0)      | 4.50 (0.52)                            | p = 0.143                                |
| mber of siblings                                      | 1.74 (0.63)      | 1.50 (0.53)                            | t (39) = 1.09,<br>p = 0.281              |
| - 32 months                                           | ( <i>n</i> = 32) | ( <i>n</i> = 12)                       | ,                                        |
| c of child – boy                                      | 16 (50.0%)       | 9 (75.0%)                              | $\chi^2(1) = 2.22,$                      |
| ,                                                     |                  |                                        |                                          |
| of child – girl                                       | 16 (50.0%)       | 3 (25.0%)                              | <i>p</i> = 0.136                         |
| nitive delay between 1 to 2 sd                        | NA               | 11 (91.7%)                             | NA                                       |
| initive delay > 2 sd                                  | NA               | 1 (8.3%)                               | NA                                       |
| d's education – no schooling                          | 16 (50.0%)       | 7 (58.3%)                              | $\chi^2(1) = 0.24,$                      |
| d's education – preschool                             | 16 (50.0%)       | 5 (41.7%)                              | p = 0.622                                |
| guage used – Cantonese                                | 32 (100.0%)      | 11 (91.7%)                             | $\chi^2(1) = 2.73,$                      |
| iguage used – Cantonese<br>iguage used – Mandarin     | 0 (0.0%)         | 1 (8.3%)                               | p = 0.273                                |
| 5 5                                                   |                  | . ,                                    | $\gamma = 0.273$<br>$\chi^2 (1) = 0.15,$ |
| ily type – nuclear                                    | 23 (71.9%)       | 10 (83.3%)                             |                                          |
| nily type – others                                    | 9 (28.1%)        | 2 (16.7%)                              | p = 1.00                                 |
| ital relationship – married                           | 28 (87.5%)       | 11 (91.7%)                             | $\chi^2(1) = 0.15,$                      |
| ital relationship – single/separated/divorced/widowed | 4 (12.5%)        | 1 (8.3%)                               | <i>p</i> = 1.00                          |
| ther's education $- \le 9$ years                      | 2 (6.5%)         | 3 (27.3%)                              | $\chi^2$ (1) = 3.36,                     |
| ther's education $- > 9$ years                        | 29 (93.5%)       | 8 (72.7%)                              | p = 0.103                                |
| her's education $- \le 9$ years                       | 2 (6.7%)         | 4 (36.4%)                              | $\chi^2(1) = 5.68,$                      |
| her's education – > 9 years                           | 28 (93.3%)       | 7 (63.6%)                              | p = 0.035                                |
| nily income $- \le HK$ \$19,999                       | 11 (35.5%)       | 3 (27.3%)                              | $\chi^2 (1) = 0.25,$                     |
|                                                       |                  |                                        |                                          |
| nily income $- \ge HK$ \$20,000                       | 20 (64.5%)       | 8 (72.7%)                              | p = 0.723                                |
| ld's age (months)                                     | 31.30 (0.89)     | 31.47 (0.77)                           | t(42) = 0.59,                            |
|                                                       |                  | <b>••</b> • • <b>/•</b> • • •          | p = 0.460                                |
| ld's length of residence in Hong Kong (months)        | 31.00 (1.10)     | 28.14 (8.03)                           | t(31) = 1.83,                            |
|                                                       |                  |                                        | <i>p</i> = 0.077                         |
| ther's length of residence in Hong Kong (years)       | 26.18 (13.20)    | 25.40 (14.22)                          | t(36) = 0.15,                            |
| J                                                     |                  | ······································ | p = 0.879                                |
| her's length of residence in Hong Kong (years)        | 35.73(7.80)      | 34.56 (15.56)                          | p = 0.079<br>t (29) = 0.20,              |
| ner stiengtit of residence III nong Kong (years)      | 33.73(7.00)      | J4.JO (15.JO)                          |                                          |
| where of eihlinger                                    |                  | 1 (7 (0 00)                            | p = 0.844                                |
| mber of siblings                                      | 1.63 (0.56)      | 1.67 (0.89)                            | t(40) = 0.15,                            |
|                                                       |                  |                                        | <i>p</i> = 0.894                         |
| 25 (1                                                 | (n = 32)         | (n = 9)                                |                                          |
| – 35 months                                           |                  |                                        |                                          |
| – 35 months<br>: of child – boy<br>: of child – girl  | 16 (50.0%)       | 6 (66.7%)                              | $\chi^2$ (1) = 0.79,<br>p = 0.466        |

# 254 👄 C. LEUNG ET AL.

# Table 5. (Continued).

| NA<br>NA<br>10 (31.3%)<br>22 (68.8%)<br>32 (100.0%)<br>19 (59.4%)<br>13 (40.6%)<br>29 (90.6%)<br>3 (9.4%)<br>6 (18.8%)<br>26 (81.3%)<br>2 (6.3%)<br>30 (93.8%) | 6 (66.7%)<br>3 (33.3%)<br>3 (33.3%)<br>6 (66.7%)<br>9 (100.0%)<br>6 (66.7%)<br>3 (33.3%)<br>7 (77.8%)<br>2 (22.2%)<br>4 (44.4%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA<br>NA<br>$\chi^2$ (1) = 0.01,<br>p = 1.00<br>NA<br>$\chi^2$ (1) = 0.16,<br>p = 1.00<br>$\chi^2$ (1) = 1.08,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 (31.3%)<br>22 (68.8%)<br>32 (100.0%)<br>19 (59.4%)<br>13 (40.6%)<br>29 (90.6%)<br>3 (9.4%)<br>6 (18.8%)<br>26 (81.3%)<br>2 (6.3%)                           | 3 (33.3%)<br>6 (66.7%)<br>9 (100.0%)<br>6 (66.7%)<br>3 (33.3%)<br>7 (77.8%)<br>2 (22.2%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\chi^{2}$ (1) = 0.01,<br>p = 1.00<br>NA<br>$\chi^{2}$ (1) = 0.16,<br>p = 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 22 (68.8%)<br>32 (100.0%)<br>19 (59.4%)<br>13 (40.6%)<br>29 (90.6%)<br>3 (9.4%)<br>6 (18.8%)<br>26 (81.3%)<br>2 (6.3%)                                         | 6 (66.7%)<br>9 (100.0%)<br>6 (66.7%)<br>3 (33.3%)<br>7 (77.8%)<br>2 (22.2%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | p = 1.00<br>NA<br>$\chi^2 (1) = 0.16,$<br>p = 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 32 (100.0%)<br>19 (59.4%)<br>13 (40.6%)<br>29 (90.6%)<br>3 (9.4%)<br>6 (18.8%)<br>26 (81.3%)<br>2 (6.3%)                                                       | 9 (100.0%)<br>6 (66.7%)<br>3 (33.3%)<br>7 (77.8%)<br>2 (22.2%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\chi^2$ (1) = 0.16,<br>p = 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 19 (59.4%)<br>13 (40.6%)<br>29 (90.6%)<br>3 (9.4%)<br>6 (18.8%)<br>26 (81.3%)<br>2 (6.3%)                                                                      | 6 (66.7%)<br>3 (33.3%)<br>7 (77.8%)<br>2 (22.2%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\chi^2$ (1) = 0.16,<br>p = 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13 (40.6%)<br>29 (90.6%)<br>3 (9.4%)<br>6 (18.8%)<br>26 (81.3%)<br>2 (6.3%)                                                                                    | 3 (33.3%)<br>7 (77.8%)<br>2 (22.2%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | p = 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 29 (90.6%)<br>3 (9.4%)<br>6 (18.8%)<br>26 (81.3%)<br>2 (6.3%)                                                                                                  | 7 (77.8%)<br>2 (22.2%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | p = 1.00<br>$\chi^2 (1) = 1.08.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3 (9.4%)<br>6 (18.8%)<br>26 (81.3%)<br>2 (6.3%)                                                                                                                | 2 (22.2%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | x (1) = 1.00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6 (18.8%)<br>26 (81.3%)<br>2 (6.3%)                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p = 0.299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 26 (81.3%)<br>2 (6.3%)                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\chi^2$ (1) = 2.52,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 (6.3%)                                                                                                                                                       | 5 (55.6%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | p = 0.185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| . ,                                                                                                                                                            | 3 (33.3%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\chi^2$ (1) = 4.81,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| JU (JJ,070)                                                                                                                                                    | 6 (66.7%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | p = 0.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4 (12.9%)                                                                                                                                                      | 2 (33.3%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\chi^2$ (1) = 1.54,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 27 (87.1%)                                                                                                                                                     | 4 (66.7%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | p = 0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 34.26 (0.73)                                                                                                                                                   | 34.72 (1.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t(39) = 1.46,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p = 0.152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 32.21 (7.38)                                                                                                                                                   | 34.40 (1.14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t (32) = 0.66,<br>p = 0.517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 30,19 (11,42)                                                                                                                                                  | 16.00 (14.46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | p = 0.317<br>t (33) = 2.65,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 56115 (1112)                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p = 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 36.59 (6.48)                                                                                                                                                   | 39.80 (5.22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t(30) = 1.04,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>p</i> = 0.306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.50 (0.50)                                                                                                                                                    | 1.25 (0.46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t(37) = 1.69, p = 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ( <i>n</i> = 32)                                                                                                                                               | ( <i>n</i> = 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16 (50.0%)                                                                                                                                                     | 10 (83.3%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\chi^2$ (1) = 4.01,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16 (50.0%)                                                                                                                                                     | 2 (16.7%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>p</i> = 0.083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NA                                                                                                                                                             | 10 (83.3%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NA                                                                                                                                                             | 2 (16.7%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\chi^2$ (1) = 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p = 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\chi^2$ (1) = 1.29,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p = 0.315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\chi^2(1) = 0.46,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p = 0.603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\chi^2(1) = 2.26,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p = 0.241<br>$\chi^2 (1) = 1.02,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\chi$ (1) = 1.02,<br>p = 0.369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p = 0.309<br>$\chi^2 (1) = 4.14,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| . ,                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p = 0.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p = 0.001<br>t (42) = 1.47,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| . ,                                                                                                                                                            | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | p = 0.149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                | 55.15 (12.21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t(29) = 1.51,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p = 0.142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 23.96 (14.31)                                                                                                                                                  | 22.80 (16.32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t(36) = 0.21,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>p</i> = 0.832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 38.89 (9.26)                                                                                                                                                   | 39.22 (14.44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t(34) = 0.08,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1 74 (0 (0)                                                                                                                                                    | 2.26 (1.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | p = 0.936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t(40) = 2.26, p = 0.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .2 (1) 0 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\chi^2$ (1) = 0.70,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p = 0.404<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\chi^2(1) = 0.37,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\chi^{-}(1) = 0.37,$<br>p = 0.702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p = 0.702<br>$\chi^2 (2) = 3.15,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | x (2) = 3.13,<br>p = 0.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p = 0.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\chi^2(1) = 0.075,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p = 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\chi^2$ (1) = 2.26,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p = 0.160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\chi^2(1) = 4.58,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p = 0.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\chi^2 (1) = 4.18,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p = 0.062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\chi^2(1) = 5.81,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 30 (88.2%)                                                                                                                                                     | 8 (57.1%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | p = 0.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                | 32.21 (7.38)<br>30.19 (11.42)<br>36.59 (6.48)<br>1.50 (0.50)<br>(n = 32)<br>16 (50.0%)<br>16 (50.0%)<br>16 (50.0%)<br>16 (50.0%)<br>25 (78.1%)<br>32 (100.0%)<br>18 (56.3%)<br>14 (43.8%)<br>29 (90.6%)<br>3 (9.4%)<br>7 (21.9%)<br>25 (78.1%)<br>5 (15.6%)<br>27 (84.4%)<br>7 (21.9%)<br>25 (78.1%)<br>5 (15.6%)<br>27 (84.4%)<br>7 (21.9%)<br>25 (78.1%)<br>37.22 (0.90)<br>36.87 (0.87)<br>23.96 (14.31)<br>38.89 (9.26)<br>1.74 (0.68)<br>(n = 34)<br>16 (47.1%)<br>18 (52.9%)<br>NA<br>NA<br>NA<br>7 (20.6%)<br>27 (79.4%)<br>32 (94.1%)<br>2 (5.9%)<br>3 (8.8%)<br>31 (91.2%)<br>2 (5.9%)<br>32 (94.1%)<br>2 (5.9%)<br>3 (94.1%)<br>3 (94.1%) | 32.21 (7.38) $34.40 (1.14)$ $30.19 (11.42)$ $16.00 (14.46)$ $36.59 (6.48)$ $39.80 (5.22)$ $1.50 (0.50)$ $1.25 (0.46)$ $(n = 32)$ $(n = 12)$ $16 (50.0%)$ $10 (83.3%)$ $16 (50.0%)$ $2 (16.7%)$ NA $10 (83.3%)$ $16 (50.0%)$ $2 (16.7%)$ $7 (21.9%)$ $3 (25.0%)$ $22 (77.1%)$ $9 (75.0%)$ $32 (100.0%)$ $12 (100.0%)$ $18 (56.3%)$ $9 (75.0%)$ $32 (100.0%)$ $12 (100.0%)$ $18 (56.3%)$ $3 (25.0%)$ $29 (90.6%)$ $10 (83.3%)$ $3 (9.4%)$ $2 (16.7%)$ $7 (21.9%)$ $5 (45.5%)$ $25 (78.1%)$ $5 (45.5%)$ $25 (78.1%)$ $5 (45.5%)$ $25 (78.1%)$ $5 (45.5%)$ $25 (78.1%)$ $5 (45.5%)$ $25 (78.1%)$ $5 (45.5%)$ $25 (78.1%)$ $5 (45.5%)$ $25 (78.1%)$ $5 (45.5%)$ $25 (78.1%)$ $5 (45.5%)$ |

(Continued)

#### Table 5. (Continued).

|                                                   | MCHC sample   | CAS sample    | Significance                |
|---------------------------------------------------|---------------|---------------|-----------------------------|
| Child's age (months)                              | 40.65 (0.79)  | 40.58 (0.88)  | t (47) = 0.30,<br>p = 0.769 |
| Child's length of residence in Hong Kong (months) | 39.26 (5.07)  | 36.73 (11.56) | t(40) = 0.99,<br>p = 0.327  |
| Mother's length of residence in Hong Kong (years) | 29.23 (12.10) | 21.51 (15.99) | t(43) = 1.79,<br>p = 0.081  |
| Father's length of residence in Hong Kong (years) | 35.61(11.78)  | 35.31 (12.43) | t(42) = 0.08,<br>p = 0.939  |
| Number of siblings                                | 1.76 (0.75)   | 1.40 (0.51)   | t(46) = 1.67, p = 0.101     |

is a promising instrument for assessing the cognitive development of toddlers. Though it is originally developed for Chinese toddlers in Hong Kong, it is potentially useful for other Chinese-speaking toddlers in other countries and may also be a useful reference tool for the assessment of toddlers from other ethnic backgrounds.

# Funding

This study was funded by the Department of Health, Hong Kong SAR Government.

# ORCID

Tamis Pin (b) http://orcid.org/0000-0002-1572-4111 Andrew Siu (b) http://orcid.org/0000-0002-8117-2829

#### References

- 1. Green E, Stroud L, Bloomfield S, Cronje J, Foxcroft C, Hurter K, Lane H, Marais R, Marx C, McAlinden P, et al. Griffiths scale of child development. 3rd ed. Oxford (UK): Hogrefe; 2016.
- Roid GH, Sampers JL. Merrill-palmer-R scales of development. Wood Dale (IL): Stoelting Co; 2004.
- Bayley N. Bayley scales of infant and toddler development. 3rd ed. San Antonio (TX): Pearson Education, Inc; 2006.
- 4. Roid GH. Stanford binet intelligence scale. 5th ed. Itasca (IL): Riverside Publishing; 2003.
- Tso WWY, Wong VCN, Xia X, Faragher B, Li M, Xu X, Ao L, Zhang X, Jiao FY, Du K, et al. The Griffiths development scales-Chinese (GDS-C): a cross-cultural comparison of developmental trajectories between Chinese and British children. Child Care Health Dev. 2018;44:378–83. doi:10.1111/cch.12548.
- He W, EW W. Item equivalence in English and Chinese translation of a cognitive development test for preschoolers. Int J Test. 2010;10 (1): 80–94. https://doi.org/10.1080/15305050903534738
- Williams ME, Sando L, Soles TG. Cognitive Tests in Early Childhood J Psychoeduc Asses. 2014;32(5):455–76. doi:10.1177/ 0734282913517526.
- Department of Health. Hong Kong comprehensive assessment scales for children. Hong Kong: Child Assessment Service, Department of Health; 2014.
- Sattler JM. Assessment of children: cognitive foundations. 5th ed. San Diego, USA: Jerome M. Sattler, Publisher, Inc; 2008.

- Wadsworth BJ. Piaget's theory of cognitive and affective development: foundations of constructivism. White Plains (NY): Longman; 1996.
- McGrew K. The Cattell-Horn-Carroll theory of theory of cognitive abilities: past, present and future. In: Flanagan DP, Harrison PL, editors. Contemporary intellectual assessment: theories, tests and issues. New York (NY): The Guildford Press; 2005. p. 136–81.
- 12. Alfonso VC, Flanagan DP, Radwan S. The impact of the Cattell-Horn-Carroll theory on test development and interpretation of cognitive and academic abilities. In: Flanagan DP, Harrison PL, editors. Contemporary intellectual assessment: theories, tests and issues. New York (NY): The Guildford Press; 2005. p. 185-202.
- Chen HY, Keith TZ, Chen YH, Chang BS. What does the WISC-IV measure? Validation of the scoring and CHC-based interpretative approaches. J Res Edu Sci. 2009;54:85–108.
- 14. Bond T, Fox CM. Applying the Rasch model: fundamental measurement in the human sciences. 2nd ed. Mahwah (NJ): Lawrence Erlbaum Associates; 2007.
- 15. Census and Statistics Department. Population and household statistics analysed by district council district 2017. Hong Kong: Census and Statistics Department; 2018.
- 16. Chen WH, Lenderking W, Jin Y, Wyrwich KW, Gelhorn H, Revicki DA. Is Rasch model analysis applicable in small sample size pilot studies for assessing item characteristics? An example using PROMIS pain behavior item bank data. Qual Life Res. 2014;23(2):485–93. http://www.jstor.com/stable/24726548.
- Census and Statistics Department. Population by-census: summary results. Hong Kong: Census and Statistics Department; 2017; 2016.
- McCreary LL, Conrad KM, Conrad KJ, Scott CK, Funk RR, Dennis ML. Using the Rasch measurement model in psychometric analysis of the family effectiveness measure. Nurs Res. 2013;62 (3):149–59. doi:10.1097/NNR.0b013e31828eafe6.
- Planinic M, Boone WJ, Susac A, Ivanjek L. Rasch analysis in physics education research: why measurement matters. Phys Rev Phys Educ Res. 2019;15(14):020111. doi:10.1103/ PhysRevPhysEducRes.15.020111.
- Huaa J, Lia Y, Yeb K, Mab Y, Lina S, Gub G, Du W. The reliability and validity of Bayley-III cognitive scale in China's male and female children. Early Hum Dev. 2019;129:71–78. doi:10.1016/j. earlhumdev.2019.01.017.
- Woudstra AJ, Meppelink CS, Pander Maat H, Oosterhaven J, Fransen MP, Dima AL. Validation of the short assessment of health literacy (SAHL-D) and short-form development: Rasch analysis. BMC Med Res Methodol. 2019;19:122. doi:10.1186/s12874-019-0762-4.